MIC2950*/2951

General Description

The MIC2950 and MIC2951 are "bulletproof" micropower voltage regulators with very low dropout voltage (typically 40 mV at light loads and 250 mV at 100 mA), and very low quiescent current. Like their predecessors, the LP2950 and LP2951, the quiescent current of the MIC2950/MIC2951 increases only slightly in dropout, thus pro-longing battery life. The MIC2950/MIC2951 are pin for pin compatible with the LP2950/LP2951, but offer lower dropout, lower quiescent current, reverse battery, and automotive load dump protection.
The key additional features and protection offered include higher output current (150 mA), positive transient protection for up to 60 V (load dump), and the ability to survive an unregulated input voltage transient of -20 V below ground (reverse battery).
The plastic DIP and SOIC versions offer additional system functions such as programmable output voltage and logic controlled shutdown. The 3-pin TO-92 MIC2950 is pincompatible with the older 5 V regulators.
These system functions also include an error flag output that warns of a low output voltage, which is often due to failing batteries on the input. This may also be used as a power-on reset. A logic-compatible shutdown input is also available which enables the regulator to be switched on and off. This part may also be pin-strapped for a 5 V output, or programmed from 1.24 V to 29 V with the use of two external resistors.
Data sheets and support documentation can be found on Micrel's web site at: www.micrel.com.

Features

- High accuracy $3.3,4.85$, or 5 V , guaranteed 150 mA output
- Extremely low quiescent current
- Low-dropout voltage
- Extremely tight load and line regulation
- Very low temperature coefficient
- Use as regulator or reference
- Needs only $1.5 \mu \mathrm{~F}$ for stability
- Current and thermal limiting
- Unregulated DC input can withstand -20 V reverse battery and +60 V positive transients

MIC2951 Version Only

- Error flag warns of output dropout
- Logic-controlled electronic shutdown
- Output programmable from 1.24 to 29 V

Applications

- Automotive electronics
- Voltage reference
- Avionics
- Cellular telephones
- Battery powered equipment
- SMPS post-regulator
- High efficiency linear power supplies

Block Diagram

* MIC2950 Discontinuance September 2007.

MM8 is a registered trademark of Micrel, Inc.
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com

The MIC2950 is available as either an -05 or -06 version. The -05 and -06 versions are guaranteed for junction temperatures from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; the -05 version has a tighter output and reference voltage specification range over temperature. The MIC2951 is available as an -02 or -03 version.

The MIC2950 and MIC2951 have a tight initial tolerance (0.5% typical), a very low output voltage temperature coefficient which allows use as a low-power voltage reference, and extremely good load and line regulation (0.04% typical). This greatly reduces the error in the overall circuit, and is the result of careful design techniques and process control.

Ordering Information

Part Number	Voltage	Accuracy	Junction Temperature Range	Package	Lead Finish
MIC2950-05BZ*	5.0 V	0.5\%	-40° to $+125^{\circ} \mathrm{C}$	3-Pin TO-92	Standard
MIC2950-06BZ*	5.0 V	1.0\%	-40° to $+125^{\circ} \mathrm{C}$	3-Pin TO-92	Standard
MIC2951-02BM	5.0 V	0.5\%	-40° to $+125^{\circ} \mathrm{C}$	8-Pin SOIC	Standard
MIC2951-03BM	5.0 V	1.0\%	-40° to $+125^{\circ} \mathrm{C}$	8-Pin SOIC	Standard
MIC2951-02BN**	5.0 V	0.5\%	-40° to $+125^{\circ} \mathrm{C}$	8-Pin Plastic DIP	Standard
MIC2951-03BN	5.0 V	1.0\%	-40° to $+125^{\circ} \mathrm{C}$	8-Pin Plastic DIP	Standard
MIC2951-03BMM	5.0 V	1.0\%	-40° to $+125^{\circ} \mathrm{C}$	8-Pin MSOP	Standard
MIC2951-3.3BM	3.3 V	1.0\%	-40° to $+125^{\circ} \mathrm{C}$	8-Pin SOIC	Standard
MIC2950-05YZ*/***	5.0 V	0.5\%	-40° to $+125^{\circ} \mathrm{C}$	3-Pin TO-92	Pb-Free
MIC2950-06YZ*/***	5.0 V	1.0\%	-40° to $+125^{\circ} \mathrm{C}$	3-Pin TO-92	Pb-Free
MIC2951-02YM***	5.0 V	0.5\%	-40° to $+125^{\circ} \mathrm{C}$	8-Pin SOIC	Pb-Free
MIC2951-03YM ${ }^{* * *}$	5.0 V	1.0\%	-40° to $+125^{\circ} \mathrm{C}$	8-Pin SOIC	Pb-Free
MIC2951-03YN***	5.0 V	1.0\%	-40° to $+125^{\circ} \mathrm{C}$	8-Pin Plastic DIP	Pb-Free
MIC2951-03YMM***	5.0 V	1.0\%	-40° to $+125^{\circ} \mathrm{C}$	8-Pin MSOP	Pb-Free
MIC2951-3.3YM***	3.3 V	1.0\%	-40° to $+125^{\circ} \mathrm{C}$	8-Pin SOIC	Pb-Free

Note:

* TO-92 Package discontinuance notification issued September 2007. End-of-life-buy offer thru December 31, 2007. Contact factory for additional information.
** Contact factory for Pb-Free version.
*** Pb -Free RoHS compliant with 'high-melting solder' exemption.

Pin Configuration

Pin Description

Pin No. MIC2950	Pin No. MIC2951	Pin Name	Pin Function
3	1	OUT	Regulated Output.
	2	SNS	Sense (Input): Output-voltage sensing end of internal voltage divider for fixed 5V operation. Not used in adjustable configuration.
2	3	SHDN	Shutdown/Enable (Input): TTL compatible input. High = shutdown, low or open = enable.
	5	$\overline{\text { ERR }}$	Ground.
	6	Trror Flag (Output): Active low, open-collector output (low = error, floating =	
normal).			

Absolute Maximum Ratings ${ }^{(1)}$

Input Supply Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)^{(5)}$

Feedback Input Voltage $\left(\mathrm{V}_{\mathrm{FB}}\right)^{(6,7)}$................... -1.5 to +26 V

- 20 to +60 V

Shutdown Input Voltage $\left(\mathrm{V}_{\text {SHDN }}\right)^{(6)}$................... 0.3 to +30 V
Power Dissipation $\left(P_{\mathrm{D}}\right)^{(4)}$..........................Internally Limited
Lead Temperature (soldering, 5 sec .)........................ $260^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $E S D^{(3)}$

Operating Ratings ${ }^{(2)}$

Input Supply Voltage ($\mathrm{V}_{\text {IN }}$). Junction Temperature $\left(\mathrm{T}_{J}\right)^{(4)}$

MIC2950-05/MIC2950-06 \qquad $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
MIC2951-02/MIC2950-03.................. $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Electrical Characteristics ${ }^{(1)}$

$V_{I N}=6 \mathrm{~V} ; \mathrm{I}_{\mathrm{L}}=100 \mu \mathrm{~A} ; \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F} ; \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, bold values indicate $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+125^{\circ} \mathrm{C}$; Note 8; unless noted.

Parameter	Condition	Min	Typ	Max	Units
Output Voltage$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	MIC295x-02/-05 ($\pm 0.5 \%$)	4.975	5.000	5.025	V
	MIC295x-03/06 ($\pm 1 \%$)	4.950	5.000	5.050	V
	MIC2951-3.3 ($\pm 1 \%$)	3.267	3.300	3.333	V
	MIC2951-4.8 ($\pm 1 \%$)	4.802	4.850	4.899	V
Output Voltage$-25^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq+85^{\circ} \mathrm{C}$	MIC295x-02/-05 ($\pm 0.5 \%$)	4.950		5.050	V
	MIC295x-03/-06 ($\pm 1 \%$)	4.925		5.075	V
	MIC2951-3.3 ($\pm 1 \%$)	3.251		3.350	V
	MIC2951-4.8 ($\pm 1 \%$)	4.777		4.872	V
Output Voltage Over Full Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	MIC295x-02/-05 ($\pm 0.5 \%$)	4.940		5.060	V
	MIC295x-03/06 ($\pm 1 \%$)	4.900		5.100	V
	MIC2951-3.3 ($\pm 1 \%$)	3.234		3.366	V
	MIC2951-4.8 ($\pm 1 \%$)	4.753		4.947	V
Output Voltage Over Load Variation	MIC295x-02/-05 ($\pm 0.5 \%), 100 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{L}} \leq 150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}} \leq \mathrm{T}_{\mathrm{J}(\text { max }}$	4.930		5.070	V
	MIC295x-03/-06 ($\pm 1 \%), 100 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{L}} \leq 150 \mathrm{~mA}, \mathrm{~T}_{J} \leq \mathrm{T}_{\mathrm{J}(\max)}$	4.880		5.120	V
	MIC2951-3.3 $\pm \pm 1 \%), 100 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{L}} \leq 150 \mathrm{~mA}, \mathrm{~T}_{J} \leq \mathrm{T}_{\mathrm{J}(\text { max }}$	3.221		3.379	V
	MIC2951-4.8 ($\pm 1 \%$), 100 $\mu \mathrm{A} \leq \mathrm{I}_{\mathrm{L}} \leq 150 \mathrm{~mA}, \mathrm{~T}_{J} \leq \mathrm{T}_{\mathrm{J}(\text { max }}$	4.733		4.967	V
Output Voltage Temperature Coefficient	MIC295x-02/-05 ($\pm 0.5 \%$), Note 9		20	100	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	MIC295x-03/-06 ($\pm 1 \%$), Note 9		50	150	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	MIC2951-3.3 ($\pm 1 \%$), Note 9		50	150	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	MIC2951-4.8 ($\pm 1 \%$), Note 9		50	150	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Line Regulation	MIC295x-02/-05 ($\pm 0.5 \%$), Notes 10, 11		0.03	$\begin{aligned} & 0.10 \\ & 0.20 \end{aligned}$	$\begin{aligned} & \hline \% \\ & \% \end{aligned}$
	MIC295x-03/-06 ($\pm 1 \%$), Notes 10, 11		0.04	$\begin{aligned} & 0.20 \\ & 0.40 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
	MIC2951-3.3 ($\pm 1 \%$), Notes 10, 11		0.04	$\begin{aligned} & 0.20 \\ & 0.40 \end{aligned}$	$\begin{aligned} & \% \\ & \% \\ & \hline \end{aligned}$
	MIC2951-4.8 ($\pm 1 \%$), Notes 10, 11		0.04	$\begin{aligned} & 0.20 \\ & 0.40 \end{aligned}$	$\begin{aligned} & \% \\ & \% \end{aligned}$

Parameter	Condition	Min	Typ	Max	Units
Load Regulation	MIC295x-02/-05 ($\pm 0.5 \%$), 100 $\mu \mathrm{A} \leq \mathrm{I}_{\mathrm{L}} \leq 150 \mathrm{~mA}$, Note 10		0.04	$\begin{aligned} & 0.10 \\ & 0.20 \end{aligned}$	$\begin{aligned} & \hline \% \\ & \% \end{aligned}$
	MIC295x-03/-06 ($\pm 1 \%$), 100 $\mu \mathrm{A} \leq \mathrm{I}_{\mathrm{L}} \leq 150 \mathrm{~mA}$, Note 10		0.10	$\begin{aligned} & 0.20 \\ & \mathbf{0 . 3 0} \end{aligned}$	$\begin{aligned} & \hline \% \\ & \% \end{aligned}$
	MIC2951-3.3 ($\pm 1 \%$), $100 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{L}} \leq 150 \mathrm{~mA}$, Note 10		0.10	$\begin{aligned} & 0.20 \\ & \mathbf{0 . 3 0} \end{aligned}$	$\begin{aligned} & \% \\ & \% \\ & \% \end{aligned}$
	MIC2951-4.8 ($\pm 1 \%$), $100 \mu \mathrm{~A} \leq \mathrm{I}_{\mathrm{L}} \leq 150 \mathrm{~mA}$, Note 10		0.10	$\begin{aligned} & 0.20 \\ & \mathbf{0 . 3 0} \end{aligned}$	$\begin{aligned} & \hline \% \\ & \% \end{aligned}$
Dropout Voltage	MIC295x-02/-03/-05/-06, $\mathrm{I}_{\mathrm{L}}=100 \mu \mathrm{~A}$, Note 12		40	$\begin{gathered} 80 \\ 140 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
	MIC295x-02/-03/-05/-06, $\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}$, Note 12		250	300	mV
	MIC295x-02/-03/-05/-06, IL = 150mA, Note 12		300	$\begin{aligned} & 450 \\ & 600 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
	MIC2951-3.3 ($\pm 1 \%$), $\mathrm{I}_{\mathrm{L}}=100 \mu \mathrm{~A}$, Note 12		40	$\begin{gathered} 80 \\ 150 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
	MIC2951-3.3 ($\pm 1 \%$), $\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}$, Note 12		250	350	mV
	MIC2951-3.3 ($\pm 1 \%$), $\mathrm{I}_{\mathrm{L}}=150 \mathrm{~mA}$, Note 12		320	$\begin{aligned} & 450 \\ & 600 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
	MIC2951-4.8 ($\pm 1 \%$), $\mathrm{L}=100 \mu \mathrm{~A}$, Note 12		40	$\begin{gathered} 80 \\ 140 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
	MIC2951-4.8 ($\pm 1 \%$), $\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}$, Note 12		250	300	mV
	MIC2951-4.8 ($\pm 1 \%$), $\mathrm{IL}_{\mathrm{L}}=150 \mathrm{~mA}$, Note 12		320	$\begin{aligned} & 450 \\ & 600 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Ground Current	MIC295x-02/-03/-05/-06, $\mathrm{L}_{\mathrm{L}}=100 \mu \mathrm{~A}$		120	$\begin{aligned} & 180 \\ & 300 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
	MIC295x-02/-03/-05/-06, $\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}$		1.7	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
	MIC295x-02/-03/-05/-06, $\mathrm{I}_{\mathrm{L}}=150 \mathrm{~mA}$		4	$\begin{aligned} & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
	MIC2951-3.3 ($\pm 1 \%$), $\mathrm{IL}_{\mathrm{L}}=100 \mu \mathrm{~A}$		100	$\begin{array}{r} 180 \\ 300 \\ \hline \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
	MIC2951-3.3 ($\pm 1 \%$), $\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}$		1.7	2.5	mA
	MIC2951-3.3 ($\pm 1 \%$), $\mathrm{I}_{\mathrm{L}}=150 \mathrm{~mA}$		4	$\begin{gathered} 6 \\ 10 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
	MIC2951-4.8 ($\pm 1 \%$), $\mathrm{IL}_{\mathrm{L}}=100 \mu \mathrm{~A}$		120	$\begin{aligned} & 180 \\ & 300 \\ & \hline \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
	MIC2951-4.8 ($\pm 1 \%$), $\mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA}$		1.7	$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
	MIC2951-4.8 ($\pm 1 \%$), I L $=150 \mathrm{~mA}$		4	$\begin{aligned} & \hline 6 \\ & 8 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Dropout Ground Current	MIC295x-02/-03/-05/-06, $\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=100 \mu \mathrm{~A}$		280	$\begin{array}{r} 350 \\ 400 \\ \hline \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
	MIC2951-3.3 ($\pm 1 \%$), $\mathrm{V}_{\mathrm{IN}}=3.0 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=100 \mu \mathrm{~A}$		150	$\begin{aligned} & \hline 350 \\ & 400 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
	MIC2951-4.8 ($\pm 1 \%$), $\mathrm{V}_{\mathrm{IN}}=4.3 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=100 \mu \mathrm{~A}$		280	$\begin{array}{r} 350 \\ 400 \\ \hline \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$

Parameter	Condition	Min	Typ	Max	Units
Current Limit	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		300	$\begin{aligned} & 400 \\ & 450 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Thermal Regulation	Note 13		0.05	0.20	\%/W
Output Noise	10 Hz to $100 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=1.5 \mu \mathrm{~F}$		430		$\mu \mathrm{V}_{\text {RMS }}$
	10 Hz to $100 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=200 \mu \mathrm{~F}$		160		$\mu \mathrm{V}_{\text {RMS }}$
	10 Hz to $100 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=3.3 \mu \mathrm{~F}$, $0.01 \mu \mathrm{~F}$ bypass Feedback to Output		100		$\mu \mathrm{V}_{\text {RMS }}$
Reference Voltage	MIC295x-02/-05 ($\pm 0.5 \%$)	$\begin{aligned} & 1.220 \\ & 1.200 \end{aligned}$	1.235	$\begin{aligned} & 1.250 \\ & 1.260 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
	MIC295x-03/06 ($\pm 1 \%$)	$\begin{aligned} & 1.210 \\ & 1.200 \end{aligned}$	1.235	$\begin{aligned} & 1.260 \\ & 1.270 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
	MIC2951-3.3 ($\pm 1 \%$)	$\begin{aligned} & 1.210 \\ & 1.200 \end{aligned}$	1.235	$\begin{aligned} & 1.260 \\ & 1.270 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
	MIC2951-4.8 ($\pm 1 \%$)	$\begin{aligned} & 1.210 \\ & 1.200 \\ & \hline \end{aligned}$	1.235	$\begin{aligned} & 1.260 \\ & 1.270 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Reference Voltage	MIC295x-02/-05 ($\pm 0.5 \%$), Note 14	1.190		1.270	V
	MIC295x-03/-06 ($\pm 1 \%$), Note 14	1.185		1.285	V
	MIC2951-3.3 ($\pm 1 \%$), Note 14	1.185		1.285	V
	MIC2951-4.8 ($\pm 1 \%$), Note 14	1.185		1.285	V
Feedback Bias Current			20	$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Reference Voltage Temperature Coefficient	MIC295x-02/05 ($\pm 0.5 \%$), Note 9		20		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	MIC295x-03/06 ($\pm 1 \%$), Note 9		50		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	MIC2951-3.3 ($\pm 1 \%$), Note 9		50		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
	MIC2951-4.8 ($\pm 1 \%$), Note 9		50		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Feedback Bias Current Temperature Coefficient			0.1		$n \mathrm{n} /{ }^{\circ} \mathrm{C}$
Error Comparator (Flag) Output Leakage Current	$\mathrm{V}_{\mathrm{OH}}=30 \mathrm{~V}$		0.01	$\begin{array}{r} 1.00 \\ 2.00 \\ \hline \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
Error Comparator (Flag) Output Low Voltage (Flag)	$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=200 \mu \mathrm{~A}$		150	$\begin{aligned} & 250 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Error Comparator (Flag) Upper Threshold Voltage	Note 15	$\begin{aligned} & 40 \\ & 25 \end{aligned}$	60		$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Error Comparator Lower Threshold Voltage	Note 15		75	$\begin{gathered} \hline 95 \\ 140 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Error Comparator Hysteresis	Note 15		15		mV

Parameter	Condition	Min	Typ	Max	Units
Shutdown Input Logic Voltage	MIC295x-02/-05 ($\pm 0.5 \%$) Low High	2.0	1.3	0.7	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
	MIC295x-03/-06 ($\pm 1 \%$) Low High	2.0	1.3	0.7	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
	MIC2951-3.3 ($\pm 1 \%$) Low High	2.0	1.3	0.7	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
	MIC2951-4.8 ($\pm 1 \%$) Low High	2.0	1.3	0.7	$\begin{aligned} & \hline V \\ & V \\ & V \end{aligned}$
Shutdown Input Current	$\mathrm{V}_{\text {SHUTDOWN }}=2.4 \mathrm{~V}$		30	$\begin{gathered} \hline 50 \\ 100 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
	$\mathrm{V}_{\text {SHUTDOWN }}=30 \mathrm{~V}$		450	$\begin{aligned} & 600 \\ & 750 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Regulator Output Current in Shutdown	Note 7		3	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$

Notes:

1. Exceeding the absolute maximum rating may damage the device.
2. The device is not guaranteed to function outside its operating rating.
3. Devices are ESD sensitive. Handling precautions are recommended.
4. The junction-to-ambient thermal resistance of the TO-92 package is $180^{\circ} \mathrm{C} / \mathrm{W}$ with $0.4^{\prime \prime}$ leads and $160^{\circ} \mathrm{C} / \mathrm{W}$ with $0.25^{\prime \prime}$ leads to a PC board. The thermal resistance of the 8-pin DIP package is $105^{\circ} \mathrm{C} / \mathrm{W}$ junction-to-ambient when soldered directly to a PC board. Junction-to-ambient thermal resistance for the SOIC (M) package is $160^{\circ} \mathrm{C} / \mathrm{W}$. Junction-to-ambient thermal resistance for the MM8 ${ }^{\mathrm{TM}}(\mathrm{MM})$ is $250^{\circ} \mathrm{C} / \mathrm{W}$.
5. The maximum positive supply voltage of 60 V must be of limited duration ($\leq 100 \mathrm{~ms}$) and duty cycle ($\leq 1 \%$). The maximum continuous supply voltage is 30 V .
6. When used in dual-supply systems where the output terminal sees loads returned to a negative supply, the output voltage should be diode-clamped to ground.
7. $\mathrm{V}_{\text {SHDN }} \geq 2 \mathrm{~V}, \mathrm{~V}_{\text {IN }} \leq 30 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0$, with the FB pin connected to TAP.
8. Additional conditions for 8-pin devices are $\mathrm{V}_{\mathrm{FB}}=5 \mathrm{~V}$, TAP and OUT connected to SNS ($\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$) and $\mathrm{V}_{\text {SHDN }} \leq 0.8 \mathrm{~V}$.
9. Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.
10. Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered in the specification for thermal regulation.
11. Line regulation for the MIC2951 is tested at $150^{\circ} \mathrm{C}$ for $I_{L}=1 \mathrm{~mA}$. For $I_{L}=100 \mu \mathrm{~A}$ and $T_{J}=125^{\circ} \mathrm{C}$, line regulation is guaranteed by design to 0.2%. See Typical Performance Characteristics for line regulation versus temperature and load current.
12. Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV below its nominal value measured at 1 V differential. At very low values of programmed output voltage, the minimum input supply voltage of 2 V (2.3 V over temperature) must be taken into account.
13. Thermal regulation is defined as the change in output voltage at a time " t " after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a 50 mA load pulse at $\mathrm{V}_{\mathbb{I N}}=30 \mathrm{~V}(1.25 \mathrm{~W}$ pulse) for $t=10 \mathrm{~ms}$.
14. $\mathrm{V}_{\text {REF }} \leq \mathrm{V}_{\text {OUT }} \leq\left(\mathrm{V}_{\text {IN }}-1 \mathrm{~V}\right), 2.3 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 30 \mathrm{~V}, 100 \mu \mathrm{~A}<\mathrm{I}_{\mathrm{L}} \leq 150 \mathrm{~mA}, \mathrm{~T}_{J} \leq \mathrm{T}_{\text {JMAX }}$.
15. Comparator thresholds are expressed in terms of a voltage differential at the FB terminal below the nominal reference voltage measured at 6 V input. To express these thresholds in terms of output voltage change, multiply by the error amplifier gain $=\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\mathrm{REF}}=(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R} 2$. For example, at a programmed output voltage of 5 V , the error output is guaranteed to go low when the output drops by $95 \mathrm{mV} \times 5 \mathrm{~V} / 1.235 \mathrm{~V}=384 \mathrm{mV}$. Thresholds remain constant as a percent of $\mathrm{V}_{\text {OUT }}$ as $\mathrm{V}_{\text {OUT }}$ is varied, with the dropout warning occurring at typically 5% below nominal, 7.5% guaranteed.
16. Specification for packaged product only.

Typical Characteristics

Ground Pin Current

Output Voltage vs.
Temperature of 3
Representative Units

Ground Pin Current

Dropout Voltage

Input Current

Ground Pin Current

Ground Pin Current

Dropout Voltage

Typical Characteristics (continued)

MIC2951
Error Comparator Output

MIC2951 Feedback Bias Current

MIC2951
Comparator Sink Current

Ripple Rejection

MIC2951
Feedback Pin Current

MIC2951
Enable Transient

Ripple Rejection

Typical Characteristics (continued)

Fold-Back Current Limiting

Application Information

Automotive Applications

The MIC2950/2951 are ideally suited for automotive applications for a variety of reasons. They will operate over a wide range of input voltages, have very low dropout voltages (40 mV at light loads), and very low quiescent currents. These features are necessary for use in battery powered systems, such as automobiles. They are also "bulletproof" devices; with the ability to survive both reverse battery (negative transients up to 20 V below ground), and load dump (positive transients up to 60V) conditions. A wide operating temperature range with low temperature coefficients is yet another reason to use these versatile regulators in automotive designs

External Capacitors

A $1.5 \mu \mathrm{~F}$ (or greater) capacitor is required between the MIC2950/MIC2951 output and ground to prevent oscillations due to instability. Most types of tantalum or aluminum elec-trolytics will be adequate; film types will work, but are costly and therefore not recommended. Many aluminum electrolytics have electrolytes that freeze at about $-30^{\circ} \mathrm{C}$, so solid tantalums are recomm-ended for operation below $-25^{\circ} \mathrm{C}$. The important parameters of the capacitor are an effective series resistance of about 5Ω or less and a resonant frequency above 500 kHz . The value of this capacitor may be increased without limit.
At lower values of output current, less output capacitance is required for output stability. The capacitor can be reduced to $0.5 \mu \mathrm{~F}$ for current below 10 mA or $0.15 \mu \mathrm{~F}$ for currents below 1 mA . Using the 8 -pin versions at voltages below 5 V runs the error amplifier at lower gains so that more output capacitance is needed. For the worst-case situation of a 150 mA load at 1.23 V output (Output shorted to Feedback) a $5 \mu \mathrm{~F}$ (or greater) capacitor should be used.
The MIC2950 will remain stable and in regulation with no load in addition to the internal voltage divider, unlike many other voltage regulators. This is especially important in CMOS RAM keep-alive applications. When setting the output voltage of the MIC2951 version with external resistors, a minimum load of $1 \mu \mathrm{~A}$ is recomm-ended.
A $0.1 \mu \mathrm{~F}$ capacitor should be placed from the MIC2950/ MIC2951 input to ground if there is more than 10 inches of wire between the input and the AC filter capacitor or if a battery is used as the input.
Stray capacitance to the MIC2951 Feedback terminal (pin 7) can cause instability. This may especially be a problem when using high value external resistors to set the output voltage. Adding a 100 pF capacitor between Output and Feedback and increasing the output capacitor to at least $3.3 \mu \mathrm{~F}$ will remedy this.

Error Detection Comparator Output

A logic low output will be produced by the comparator whenever the MIC2951 output falls out of regulation by more than approximately 5%. This figure is the comparator's built-in offset of about 60 mV divided by the 1.235 V reference voltage. (Refer to the block diagram on Page 1). This trip level remains " 5% below normal" regardless of the programmed output voltage of the MIC2951. For example, the error flag trip level is typically 4.75 V for a 5 V output or 11.4 V for a 12 V output. The out of regulation condition may be due either to low input voltage, current limiting, thermal limiting, or overvolt-age on input (over $\cong 40 \mathrm{~V}$).
Figure 1 is a timing diagram depicting the /ERROR signal and the regulated output voltage as the MIC2951 input is ramped up and down. The /ERROR signal becomes valid (low) at about 1.3 V input. It goes high at about 5 V input (the input voltage at which $\mathrm{V}_{\text {out }}=4.75$-for 5.0 V applications). Since the MIC2951's dropout voltage is load-dependent (see curve in Typical Performance Characteristics), the input voltage trip point (about 5 V) will vary with the load current. The output voltage trip point does not vary with load.
The error comparator has an open-collector output which requires an external pull-up resistor. Depending on system requirements, this resistor may be returned to the output or some other supply voltage. In determining a value for this resistor, note that while the output is rated to sink $200 \mu \mathrm{~A}$, this sink current adds to battery drain in a low battery condition. Suggested values range from 100k to $1 \mathrm{M} \Omega$. The resistor is not required if this output is unused.

Programming the Output Voltage (MIC2951)

The MIC2951 may be pin-strapped for 5 V (or 3.3 V or 4.85 V) using its internal voltage divider by tying Pin 1 (output) to Pin 2 (sense) and Pin 7 (feedback) to Pin 6 (5V Tap). Alternatively, it may be programmed for any output voltage between its 1.235 V reference and its 30 V maximum rating. An external pair of resistors is required, as shown in Figure 2.
The complete equation for the output voltage is:

$$
\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{REF}} \times\left\{1+\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}\right\}+\mathrm{I}_{\mathrm{FB}} \mathrm{R}_{1}
$$

where $\mathrm{V}_{\text {REF }}$ is the nominal 1.235 reference voltage and I_{FB} is the feedback pin bias current, nominally -20 nA . The minimum recommended load current of $1 \mu \mathrm{~A}$ forces an upper limit of $1.2 \mathrm{M} \Omega$ on the value of R_{2}, if the regulator must work with no load (a condition often found in CMOS in standby), $\mathrm{I}_{\text {FB }}$ will produce a 2% typical error in $\mathrm{V}_{\text {OUt }}$ which may be eliminated at room temperature by trimming R_{1}. For better accuracy, choosing $R_{2}=100 k$ reduces this error to 0.17% while increasing the resistor program current to $12 \mu \mathrm{~A}$.

Reducing Output Noise

In some applications it may be advantageous to reduce the AC noise present at the output. One method is to reduce the regulator bandwidth by increasing the size of the output capacitor. This is the only method by which noise can be reduced on the 3 lead MIC2950 and is relatively inefficient, as increasing the capacitor from $1 \mu \mathrm{~F}$ to $220 \mu \mathrm{~F}$ only decreases the noise from $430 \mu \mathrm{~V}$ to $160 \mu \mathrm{~V}$ rms for a 100 kHz bandwidth at 5 V output.
Noise can be reduced fourfold by a bypass capacitor across R_{1}, since it reduces the high frequency gain from 4 to unity. Pick:

$$
\mathrm{C}_{\mathrm{BYPASS}} \cong \frac{1}{2 \pi \mathrm{R}_{1} \cdot 200 \mathrm{~Hz}}
$$

or about $0.01 \mu \mathrm{~F}$. When doing this, the output capacitor must be increased to $3.3 \mu \mathrm{~F}$ to maintain stability. These changes reduce the output noise from $430 \mu \mathrm{~V}$ to $100 \mu \mathrm{Vrms}$ for a 100 kHz bandwidth at 5 V output. With the bypass capacitor added, noise no longer scales with output voltage so that improvements are more dramatic at higher output voltages.

Figure 1. ERROR Output Timing

Figure 2. Adjustable Regulator

Typical Applications

5V Regulator with 2.5V Sleep Function

Low Drift Current Source

*MINIMUM INPUT-OUTPUT VOLTAGE RANGES FROM 40 mV TO 400 mV , DEPENDING ON LOAD CURRENT. CURRENT LIMIT IS TYPICALLY 160 mA .

Wide Input Voltage Range Current Limiter

* MINIMUM INPUT-OUTPUT VOLTAGE RANGES FROM 40 mV TO 400 mV , DEPENDING ON LOAD CURRENT.

5V Current Limiter

Typical Applications

- EARLY WARNING FLAG ON LOW INPUT VOLTAGE
- MAIN OUTPUT LATCHES OFF AT LOWER INPUT VOLTAGES
- BATTERY BACKUP ON AUXILIARY OUTPUT

OPERATION: REG. \#1'S $\mathrm{V}_{\text {OUI }}$ IS PROGRAMMED ONE DIODE DROP ABOVE 5 V ITS ERROR FLAG BECOMES ACTIVE WHEN $\mathrm{V}_{\text {IN }} \leq 5.7 \mathrm{~V}$. WHEN $\mathrm{V}_{\text {IN }}$ DROPS BELOW 5.3 V, THE ERROR FLAG OF REG. \#2 BECOMES ACTIVE AND VIA Q1 LATCHES THE MAIN OUTPUT OFF. WHEN $V_{\text {IN }}$ AGAIN EXCEEDS 5.7 V REG. \#1 IS BACK IN REGULATION AND THE EARLY WARNING SIGNAL RISES,
UNLATCHING REG. \#2 VIA D3.
Regulator with Early Warning and Auxiliary Output

Typical Applications

Latch Off When Error Flag Occurs

Open Circuit Detector for 4mA to 20mA Current Loop

C1 TO C4 ARE COMPARATORS (LP339 OR EQUIVALENT) *OPTIONAL LATCH OFF WHEN DROP OUT OCCURS. ADJUST R3 FOR C2 SWITCHING WHEN $\mathrm{V}_{\text {IN }}$ IS 6.0 V
**OUTPUTS GO LOW WHEN $V_{I N}$ DROPS BELOW DESIGNATED THRESHOLDS.
Regulator with State-of-Charge Indicator

Typical Applications

For values shown, Regulator shuts down when $\mathrm{V}_{\mathrm{IN}}<5.5 \mathrm{~V}$ and turns on again at 6.0 V . Current drain in disconnected mode is $150 \mu \mathrm{~A}$.

Low Battery Disconnect

LM34 for $125^{\circ} \mathrm{F}$ Shutdown LM35 for $125^{\circ} \mathrm{C}$ Shutdown

System Over Temperature Protection Circuit

Schematic Diagram

Package Information

IIPP VIEW
BUTTDM VIEW

END VIEW

DETAIL "A"

NDTES:

DIMENSIDNS ARE IN INCHES[MM].
CONTRILLING DIMENSIIN: INCHES
DIMENSIDN DOES NDT INCLUDE MOLD FLASH RR PROTRUSIONS, EITHER OF WHICH SHALL NDT EXCEED 0.010[0.25]

8-Pin SOIC (M)

DIMENSIONS:
INCH (MM)

8-Pin Plastic DIP (N)

NDTES:

1. DIMENSIIDN ARE IN MM [INCHES].
2. DIMENSILNS ARE IN MM LINCH
3. DIMENSIUN DIES NUT INCLUDE MILD FLASH OR PRITRUSIDNS, EITHER IF WHICH SHALL NUT EXCEED 0.20 [0.008] PER SIDE.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
 TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.
© 1999 Micrel, Incorporated.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Microchip:
MIC2951-02YM MIC2951-02YM TR MIC2951-03YMM MIC2951-3.3YM MIC2951-03YM MIC2951-03YM TR MIC2951-03YMM TR MIC2951-03YN MIC2951-3.3YM TR MIC2951-3.3YMM MIC2951-3.3YMM TR MIC2951-4.8YM MIC2951-02YM-TR MIC2951-3.3YM-TR MIC2951-4.8YM-TR MIC2951-3.3YMM-TR MIC2951-03YMM-TR
MIC2951-03YM-TR

