MPR SERIES

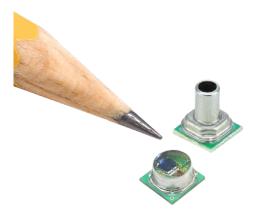
MicroPressure Board Mount Pressure Sensors Compact, High Accuracy, Compensated/Amplified

DESCRIPTION

The MPR Series is a very small piezoresistive silicon pressure sensor offering a digital output for reading pressure over the specified full scale pressure span and temperature range. It is calibrated and compensated over a specific temperature range for sensor offset, sensitivity, temperature effects, and non-linearity using an on-board Application Specific Integrated Circuit (ASIC). This product is designed to meet the requirements of higher volume medical (consumer and non-consumer) devices, commercial appliance, and industrial/HVAC applications.

DIFFERENTIATION

- Application-specific design addresses various application needs and challenges.
- Digital output: Plug and play feature enables ease of implementation and system level connectivity.
- Total Error Band: Provides true performance over the compensated temperature range, which minimizes the need to test and calibrate every sensor, thereby potentially reducing manufacturing cost; improves sensor accuracy and offers ease of sensor interchangeability due to minimal partto-part variation. (See Figure 1.)


VALUE TO CUSTOMERS

- Very small form factor: Enables portability by addressing weight, size, and space restrictions; occupies less area on the PCB.
- Wide pressure ranges simplify use.
- Enhances performance: Output accelerates performance through reduced conversion requirements and direct interface to microprocessors.
- Value solution: Cost-effective, higher volume solution with configurable options.

Meets IPC/JEDEC J-STD-020D.1
 Moisture Sensitivity Level 1
 requirements: Allows avoidance of thermal and mechanical damage during solder reflow attachment and/or repair that lesser rated sensors may incur; allows unlimited floor life when stored as specified (simplifying storage and reducing scrap); eliminates lengthy bakes prior to reflow, and allows for lean manufacturing due to stability and usability shortly after reflow.

POTENTIAL APPLICATIONS

- Consumer medical: Non-invasive blood pressure monitoring, negativepressure wound therapy, breast pumps, mobile oxygen concentrators, airflow monitors, CPAP water tanks, and medical wearables
- Non-consumer medical: Invasive blood pressure monitors, ambulatory blood pressure measurement
- Industrial: Air braking systems, gas and water meters
- Consumer: Coffee machines, humidifiers, air beds, washing machines, dishwashers

FEATURES

- 5 mm x 5 mm [0.20 in x 0.20 in] package footprint
- Calibrated and compensated
- 60 mbar to 2.5 bar | 6 kPa to 250 kPa | 1 psi to 30 psi
- 24-bit digital I²C or SPI-compatible output
- IoT (Internet of Things) ready interface
- Stainless steel pressure port
- Compatible with a variety of liquid media
- Absolute and gage pressure types
- Total Error Band after customer autozero: As low as ±1.25 %FSS
- Compensated temperature range: 0°C to 50°C [32°F to 122°F]
- REACH and RoHS compliant
- Meets IPC/JEDEC J-STD-020D.1 Moisture Sensitivity Level 1
- Select sensors available on breakout board for easy evaluation and testing
- Ultra-low power consumption (as low as 0.01 mW typ. average power, 1 Hz measurement frequency)

The MPR Series joins an extensive line of board mount pressure sensors for potential use in medical, industrial, and consumer applications. To view the entire product portfolio, click here.

Table of Contents

	eral Specifications
Powe	er Consumption and Standby Mode
Prod	luct Nomenclature and Order Guide
Pres	sure Range Specifications:
	60 mbar to 2.5 bar
	6 kPa to 250 kPa9
	1 psi to 30 psi
1.0	General Information
2.0	Pinout and Functionality
3.0	Start-Up Timing 11
4.0	Power Supply Requirement
5.0	Reference Circuit Design
	5.1 I ² C and SPI Circuit Diagrams
	5.2 Bypass Capacitor Use
6.0	I ² C Communications
	6.1 I ² C Bus Configuration
	6.2 I ² C Data Transfer
	6.3 I ² C Sensor Address
	6.4 I ² C Pressure Reading
	6.5 I ² C Status Byte
	6.6 I ² C Communications
	6.6.1 Output Measurement Command
	6.6.2 I ² C Slave Address of 0x18
	6.7 I ² C Timing and Level Parameters
7.0	SPI Communications
	7.1 SPI Definition
	7.2 SPI Data Transfer
	7.3 SPI Pressure Reading
	7.4 SPI Status Byte
	7.5 SPI Communications
	7.6 SPI Timing and Level Parameters
8.0	MPR Series Digital Output Pressure Calculation
	g Port Sensor Dimensions and Recommended PCB Pad Layout
_	rt Port Sensor Dimensions and Recommended PCB Pad Layout
	and Reel Dimensions
-	owable Protective Silicone Cap
	pmmended Tubing
	ifold and O-Ring Assembly
	ommended O-Rings
	tional Information back

FIGURE 1. TEB COMPONENTS FOR THE MPR SERIES

Total Error Band (TEB) is a single specification that includes the major sources of sensor error. TEB should not be confused with accuracy, which is actually a component of TEB. TEB is the worst error that the sensor could experience.

Honeywell uses the TEB specification in its datasheet because it is the most comprehensive measurement of a sensor's true accuracy. Honeywell also provides the accuracy specification in order to provide a common comparison with competitors' literature that does not use the TEB specification.

Many competitors do not use TEB—they simply specify the accuracy of their device. Their accuracy specification, however, may exclude certain parameters. On their datasheet, the errors are listed individually. When combined, the total error (or what would be TEB) could be significant.

Sources of Error Offset Full Scale Span Pressure Non-Linearity Pressure Hysteresis Pressure Non-Repeatability Thermal Effect on Offset Thermal Hysteresis Thermal Hysteresis

TABLE 1. ABSOLUTE MAXIMUM RATINGS ¹									
CHARACTERISTIC	MIN.	MAX.	UNIT						
Supply voltage (V _{supply})	-0.3	3.6	Vdc						
Voltage on any pin	-0.3	$V_{supply} + 0.3$	V						
ESD susceptibility (human body model)	_	4	kV						
Storage temperature	-40 [-40]	85 [185]	°C [°F]						
Soldering peak reflow temperature and time	15 s max. at 250°C [482°F]								

¹Absolute maximum ratings are the extreme limits the device will withstand without damage.

TABLE 2. ENVIRONMEN	TABLE 2. ENVIRONMENTAL SPECIFICATIONS								
CHARACTERISTIC	PARAMETER								
Humidity: external surfaces internal surfaces	0 %RH to 95 %RH, non-condensing 0 %RH to 100 %RH, condensing								
Vibration	10 g, 10 Hz to 2 kHz								
Shock	50 g, 6 ms duration								
Solder reflow	J-STD-020-D.1 Moisture Sensitivity Level 1 (unlimited shelf life when stored at ≤30°C/85 %RH)								

TABLE 3. WETTED MATERIALS					
COMPONENT	MATERAL				
Port	304 stainless steel				
Adhesives	ероху				
Electronic components	not exposed (protected by gel)				

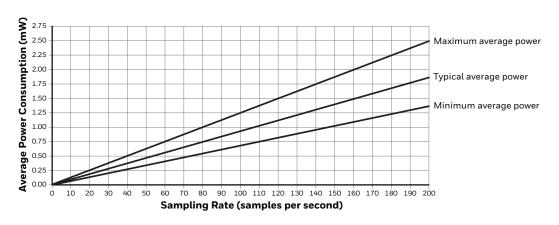
TABLE 4. SENSOR P	TABLE 4. SENSOR PRESSURE TYPES							
PRESSURE TYPE	DESCRIPTION							
Absolute	Output is proportional to the difference between applied pressure and a built-in vacuum reference.							
Gage	Output is proportional to the difference between applied pressure and atmospheric (ambient) pressure.							

TABLE 5. OPERATING SPECIFICATIONS				
CHARACTERISTIC	MIN.	TYP.	MAX.	UNIT
Supply voltage (V _{supply}):1	1.8	3.3	3.6	Vdc
Current consumption: I ² C sleep/standby mode SPI sleep/standby mode	3.0 13.0	33.8 43.8	211 221.0	nA nA
Power consumption	_	10	_	mW
Operating temperature range ²	-40 [-40]	_	85 [185]	°C [°F]
Compensated temperature range ³	0[32]	-	50 [122]	°C [°F]
Startup time (power up to data ready)	_	_	2.5	ms
Data rate	_	200	_	samples per second
I ² C/SPI voltage level: low high	– 80	_ _	20 —	%V _{supply}
Pull up on MISO, SCLK, SS, MOSI	1	_	_	kOhm
Accuracy ⁴	-	_	±0.25	%FSS BFSL ⁵
Resolution: transfer function A transfer function B transfer function C	14.0 13.5 14.0	- - -	- - -	bits

¹The sensor is not reverse polarity protected. Incorrect application of supply voltage or ground to the wrong pin may cause electrical failure.

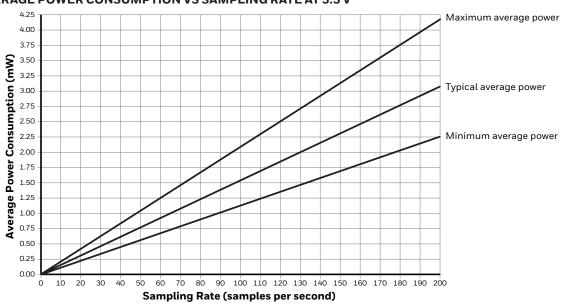
²Operating temperature range: The temperature range over which the sensor will produce an output proportional to pressure.

³Compensated temperature range: The temperature range over which the sensor will produce an output proportional to pressure within the specified performance limits (Total Error Band).

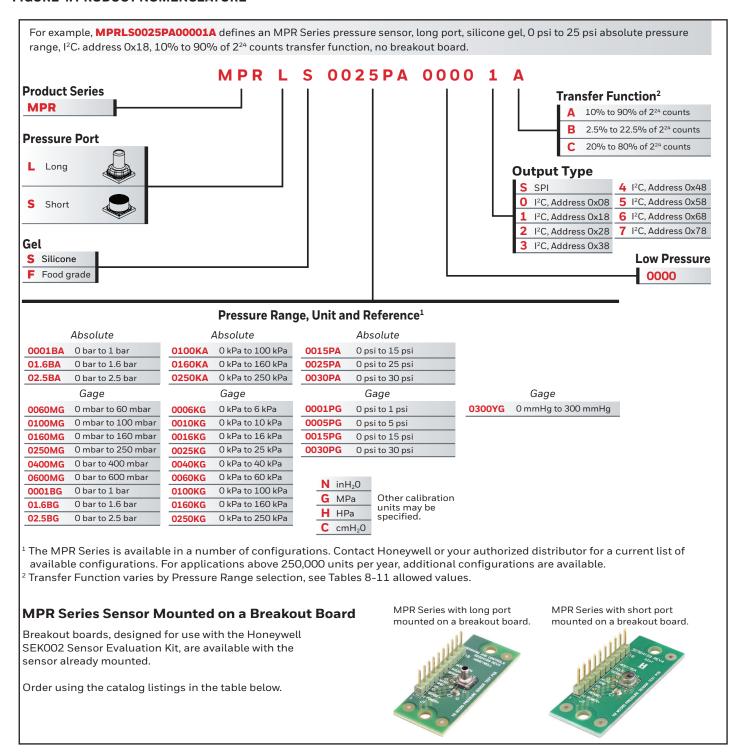

⁴**Accuracy:** The maximum deviation in output from a Best Fit Straight Line (BFSL) fitted to the output measured over the pressure range. Includes all errors due to pressure non-linearity, pressure hysteresis, and non-repeatability.

⁵Full Scale Span (FSS): The algebraic difference between the output signal measured at the maximum (Pmax.) and minimum (Pmin.) limits of the pressure range. (See Figure 4 for pressure ranges.)

POWER CONSUMPTION AND STANDBY MODE


The sensor is normally in Standby Mode and is only turned on in response to a user command, thus minimizing power consumption. Upon receiving the user command, the sensor wakes up from Standby Mode, runs a measurement in Active State, and automatically returns to Standby Mode, awaiting the next command. The resulting sensor power consumption is a function of the sampling rate (samples per second) as shown in Tables 6 and 7 and Figures 2 and 3.

Minimum Average Power 1	TABLE 6. AVERAGE POWER CONSUMPTION AT 1.8 V _{SUPPLY} (ASSUMES COMMAND AA _{HEX})									
1 0.0068 3.625 1.884 996.375 0.00000000000000000000000000000000000		POWER				IDLE POWER (mW)				
2 0.0137 7.25 1.884 992.75 0.00000000000000000000000000000000000			Minimum Avera	ge Power						
5 0.0341 18.125 1.884 981.875 0.00000000000000000000000000000000000	1	0.0068	3.625	1.884	996.375	0.0000054				
10 0.0683 36.25 1.884 963.75 0.0000000000000000000000000000000000	2	0.0137	7.25	1.884	992.75	0.0000054				
20 0.1366 72.5 1.884 963.75 0.000000 50 0.3414 181.25 1.884 818.75 0.000000 100 0.6829 362.5 1.884 637.5 0.000000 Typical Average Power 1 0.0094 4.157 2.248 995.843 0.000060 2 0.0187 8.314 2.248 991.686 0.000060 5 0.0468 20.785 2.248 979.215 0.000060 10 0.0935 41.57 2.248 958.43 0.000060 20 0.1870 83.14 2.248 979.215 0.000060 50 0.4673 207.85 2.248 792.15 0.000060 50 0.4673 207.85 2.248 792.15 0.000060 100 0.9345 415.7 2.248 584.3 0.000060 200 1.8690 831.4 2.248 168.6 0.000060 Maximum Average Power	5	0.0341	18.125	1.884	981.875	0.0000054				
50 0.3414 181.25 1.884 818.75 0.00000000000000000000000000000000000	10	0.0683	36.25	1.884	963.75	0.0000054				
100 0.6829 362.5 1.884 637.5 0.000009 Typical Average Power 1 0.0094 4.157 2.248 995.843 0.000060 2 0.0187 8.314 2.248 991.686 0.000060 5 0.0468 20.785 2.248 979.215 0.000060 10 0.0935 41.57 2.248 958.43 0.000060 20 0.1870 83.14 2.248 916.86 0.000060 50 0.4673 207.85 2.248 792.15 0.000060 100 0.9345 415.7 2.248 584.3 0.000060 200 1.8690 831.4 2.248 168.6 0.000060 Maximum Average Power 1 0.0129 4.839 2.588 995.161 0.000379 2 0.0254 9.678 2.588 975.805 0.000379 5 0.0630 24.195 2.588 975.805 0.000379 10 0.1256 48.39 2.588 951.61 0.000379 20 0.2508 96.78 2.588 903.22 0.000379	20	0.1366	72.5	1.884	963.75	0.0000054				
Typical Average Power Typical Average Power 1 0.0094 4.157 2.248 995.843 0.000060 2 0.0187 8.314 2.248 991.686 0.000060 5 0.0468 20.785 2.248 979.215 0.000060 10 0.0935 41.57 2.248 958.43 0.000060 20 0.1870 83.14 2.248 916.86 0.000060 50 0.4673 207.85 2.248 792.15 0.000060 100 0.9345 415.7 2.248 584.3 0.000060 200 1.8690 831.4 2.248 168.6 0.000060 Maximum Average Power 1 0.0129 4.839 2.588 995.161 0.000375 2 0.0254 9.678 2.588 975.805 0.000375 5 0.0630 24.195 2.588 975.805 0.000375 10 0.1256 48.39	50	0.3414	181.25	1.884	818.75	0.0000054				
Typical Average Power 1 0.0094 4.157 2.248 995.843 0.000060 2 0.0187 8.314 2.248 991.686 0.000060 5 0.0468 20.785 2.248 979.215 0.000060 10 0.0935 41.57 2.248 958.43 0.000060 20 0.1870 83.14 2.248 916.86 0.000060 50 0.4673 207.85 2.248 792.15 0.000060 100 0.9345 415.7 2.248 584.3 0.000060 200 1.8690 831.4 2.248 168.6 0.000060 Maximum Average Power 1 0.0129 4.839 2.588 995.161 0.000378 2 0.0254 9.678 2.588 975.805 0.000378 5 0.0630 24.195 2.588 975.805 0.000378 10 0.1256 48.39 2.588 951.61 0.000378	100	0.6829	362.5	1.884	637.5	0.0000054				
1 0.0094 4.157 2.248 995.843 0.000060 2 0.0187 8.314 2.248 991.686 0.000060 5 0.0468 20.785 2.248 979.215 0.000060 10 0.0935 41.57 2.248 958.43 0.000060 20 0.1870 83.14 2.248 916.86 0.000060 50 0.4673 207.85 2.248 792.15 0.000060 100 0.9345 415.7 2.248 584.3 0.000060 200 1.8690 831.4 2.248 168.6 0.000060 Maximum Average Power 1 0.0129 4.839 2.588 995.161 0.000378 2 0.0254 9.678 2.588 975.805 0.000378 5 0.0630 24.195 2.588 975.805 0.000378 10 0.1256 48.39 2.588 951.61 0.000378 20 0.2508 96.78 2.588 903.22 0.000378	200	1.3657	725	1.884	275	0.0000054				
2 0.0187 8.314 2.248 991.686 0.000060 5 0.0468 20.785 2.248 979.215 0.000060 10 0.0935 41.57 2.248 958.43 0.000060 20 0.1870 83.14 2.248 916.86 0.000060 50 0.4673 207.85 2.248 792.15 0.000060 100 0.9345 415.7 2.248 584.3 0.000060 200 1.8690 831.4 2.248 168.6 0.000060 Maximum Average Power 1 0.0129 4.839 2.588 995.161 0.000378 2 0.0254 9.678 2.588 975.805 0.000378 5 0.0630 24.195 2.588 951.61 0.000378 10 0.1256 48.39 2.588 951.61 0.000378 20 0.2508 96.78 2.588 903.22 0.000378			Typical Averag	je Power						
5 0.0468 20.785 2.248 979.215 0.000060 10 0.0935 41.57 2.248 958.43 0.000060 20 0.1870 83.14 2.248 916.86 0.000060 50 0.4673 207.85 2.248 792.15 0.000060 100 0.9345 415.7 2.248 584.3 0.000060 200 1.8690 831.4 2.248 168.6 0.000060 Maximum Average Power 1 0.0129 4.839 2.588 995.161 0.000379 2 0.0254 9.678 2.588 975.805 0.000379 5 0.0630 24.195 2.588 975.805 0.000379 10 0.1256 48.39 2.588 951.61 0.000379 20 0.2508 96.78 2.588 903.22 0.000379	1	0.0094	4.157	2.248	995.843	0.00006084				
10 0.0935 41.57 2.248 958.43 0.000060 20 0.1870 83.14 2.248 916.86 0.000060 50 0.4673 207.85 2.248 792.15 0.000060 100 0.9345 415.7 2.248 584.3 0.000060 200 1.8690 831.4 2.248 168.6 0.000060 Maximum Average Power 1 0.0129 4.839 2.588 995.161 0.000379 2 0.0254 9.678 2.588 990.322 0.000379 5 0.0630 24.195 2.588 951.61 0.000379 10 0.1256 48.39 2.588 951.61 0.000379 20 0.2508 96.78 2.588 903.22 0.000379	2	0.0187	8.314	2.248	991.686	0.00006084				
20 0.1870 83.14 2.248 916.86 0.000060 50 0.4673 207.85 2.248 792.15 0.000060 100 0.9345 415.7 2.248 584.3 0.000060 200 1.8690 831.4 2.248 168.6 0.000060 Maximum Average Power 1 0.0129 4.839 2.588 995.161 0.000379 2 0.0254 9.678 2.588 990.322 0.000379 5 0.0630 24.195 2.588 975.805 0.000379 10 0.1256 48.39 2.588 951.61 0.000379 20 0.2508 96.78 2.588 903.22 0.000379	5	0.0468	20.785	2.248	979.215	0.00006084				
50 0.4673 207.85 2.248 792.15 0.000060 100 0.9345 415.7 2.248 584.3 0.000060 Maximum Average Power 1 0.0129 4.839 2.588 995.161 0.000379 2 0.0254 9.678 2.588 990.322 0.000379 5 0.0630 24.195 2.588 975.805 0.000379 10 0.1256 48.39 2.588 951.61 0.000379 20 0.2508 96.78 2.588 903.22 0.000379	10	0.0935	41.57	2.248	958.43	0.00006084				
100 0.9345 415.7 2.248 584.3 0.000060 Maximum Average Power 1 0.0129 4.839 2.588 995.161 0.000379 2 0.0254 9.678 2.588 990.322 0.000379 5 0.0630 24.195 2.588 975.805 0.000379 10 0.1256 48.39 2.588 951.61 0.000379 20 0.2508 96.78 2.588 903.22 0.000379	20	0.1870	83.14	2.248	916.86	0.00006084				
200 1.8690 831.4 2.248 168.6 0.000060 Maximum Average Power 1 0.0129 4.839 2.588 995.161 0.000379 2 0.0254 9.678 2.588 990.322 0.000379 5 0.0630 24.195 2.588 975.805 0.000379 10 0.1256 48.39 2.588 951.61 0.000379 20 0.2508 96.78 2.588 903.22 0.000379	50	0.4673	207.85	2.248	792.15	0.00006084				
Maximum Average Power 1 0.0129 4.839 2.588 995.161 0.000379 2 0.0254 9.678 2.588 990.322 0.000379 5 0.0630 24.195 2.588 975.805 0.000379 10 0.1256 48.39 2.588 951.61 0.000379 20 0.2508 96.78 2.588 903.22 0.000379	100	0.9345	415.7	2.248	584.3	0.00006084				
1 0.0129 4.839 2.588 995.161 0.000379 2 0.0254 9.678 2.588 990.322 0.000379 5 0.0630 24.195 2.588 975.805 0.000379 10 0.1256 48.39 2.588 951.61 0.000379 20 0.2508 96.78 2.588 903.22 0.000379	200	1.8690	831.4	2.248	168.6	0.00006084				
2 0.0254 9.678 2.588 990.322 0.000379 5 0.0630 24.195 2.588 975.805 0.000379 10 0.1256 48.39 2.588 951.61 0.000379 20 0.2508 96.78 2.588 903.22 0.000379			Maximum Avera	age Power						
5 0.0630 24.195 2.588 975.805 0.000378 10 0.1256 48.39 2.588 951.61 0.000378 20 0.2508 96.78 2.588 903.22 0.000378	1	0.0129	4.839	2.588	995.161	0.0003798				
10 0.1256 48.39 2.588 951.61 0.000379 20 0.2508 96.78 2.588 903.22 0.000379	2	0.0254	9.678	2.588	990.322	0.0003798				
20 0.2508 96.78 2.588 903.22 0.000379	5	0.0630	24.195	2.588	975.805	0.0003798				
	10	0.1256	48.39	2.588	951.61	0.0003798				
50 0.6264 241.95 2.588 758.05 0.000379	20	0.2508	96.78	2.588	903.22	0.0003798				
	50	0.6264	241.95	2.588	758.05	0.0003798				
100 1.2524 483.9 2.588 516.1 0.000379	100	1.2524	483.9	2.588	516.1	0.0003798				
200 2.5044 967.8 2.588 32.2 0.000379	200	2.5044	967.8	2.588	32.2	0.0003798				



SAMPLING RATE (Samples per second)	TYPICAL AVERAGE POWER (mW)	ACTIVE TIME (ms)	ACTIVE POWER (mW)	IDLE TIME (ms)	IDLE POWER (mW)
		Minimum Avera	nge Power		
1	0.0114	3.625	3.134	996.375	0.0000099
2	0.0227	7.25	3.134	992.75	0.0000099
5	0.0568	18.125	3.134	981.875	0.0000099
10	0.1136	36.25	3.134	963.75	0.0000099
20	0.2272	72.5	3.134	963.75	0.0000099
50	0.5680	181.25	3.134	818.75	0.0000099
100	1.1361	362.5	3.134	637.5	0.0000099
200	2.2722	725	3.134	275	0.0000099
		Typical Averag	je Power		
1	0.0156	4.157	3.729	995.843	0.00011154
2	0.0311	8.314	3.729	991.686	0.00011154
5	0.0776	20.785	3.729	979.215	0.00011154
10	0.1551	41.57	3.729	958.43	0.00011154
20	0.3101	83.14	3.729	916.86	0.00011154
50	0.7751	207.85	3.729	792.15	0.00011154
100	1.5501	415.7	3.729	584.3	0.00011154
200	3.1000	831.4	3.729	168.6	0.00011154
		Maximum Avera	age Power		
1	0.0214	4.839	4.275	995.161	0.0006963
2	0.0421	9.678	4.275	990.322	0.0006963
5	0.1041	24.195	4.275	975.805	0.0006963
10	0.2075	48.39	4.275	951.61	0.0006963
20	0.4144	96.78	4.275	903.22	0.0006963
50	1.0349	241.95	4.275	758.05	0.0006963
100	2.0692	483.9	4.275	516.1	0.0006963
200	4.1377	967.8	4.275	32.2	0.0006963

FIGURE 3. AVERAGE POWER CONSUMPTION VS SAMPLING RATE AT 3.3 V

FIGURE 4. PRODUCT NOMENCLATURE

CATALOG LISTING	DESCRIPTION
MPRLS0025PA00001AB	Breakout board with 0 psi to 25 psi absolute sensor, long port, with gel, $I^2C = 0x18$, transfer function A
MPRLS0015PA0000SAB	Breakout board with 0 psi to 15 psi absolute sensor, long port, with gel, SPI, transfer function A $$
MPRLS0001PG0000SAB	Breakout board with 0 psi to 1 psi gage sensor, long port, with gel, SPI, transfer function A
MPRLS0300YG00001BB	$Breakout\ board\ with\ 0\ mmHg\ to\ 300\ mmHg\ gage\ sensor, long\ port, with\ gel,\ I^2C=0x18, transfer\ function\ B$
MPRSS0001PG00001CB	Breakout board with 0 psi to 1 psi gage sensor, short port, with gel, I^2C = 0x18, transfer function C

TABLE 8. PRESSURE RANGE SPECIFICATIONS FOR 60 MBAR TO 2.5 BAR											
PRESSURE RANGE (SEE		RE RANGE	UNIT	OVER PRESSURE ¹	BURST PRESSURE ²	TOTAL ERROR BAND AFTER CUSTOMER	TOTAL ERROR BAND,	TRANSFER FUNCTION			
FIGURE 4.)	P _{MIN.}	P _{MAX.}				AUTO-ZERO ³ (%FSS)	TYPICAL (%FSS)				
				Absolut	e						
0001BA	0	1	bar	4	8	_	±1.5	А			
01.6BA	0	1.6	bar	4	8	_	±1.5	А			
02.5BA	0	2.5	bar	4	8	_	±1.5	А			
				Gage							
0060MG	0	60	mbar	350	700	±1.25	±2.5	С			
0100MG	0	100	mbar	350	700	±1.25	±2.5	А			
0160MG	0	160	mbar	350	700	±1.25	±2.5	А			
0250MG	0	250	mbar	350	700	±1.25	±2.5	А			
0400MG	0	400	mbar	4000	8000	±2.0	±2.5	В			
0600MG	0	600	mbar	4000	8000	±2.0	±2.5	А			
0001BG	0	1	bar	4	8	±1.5	±2.5	А			
01.6BG	0	1.6	bar	4	8	±1.5	±2.5	А			
02.5BG	0	2.5	bar	4	8	±1.5	±2.5	А			

¹ Overpressure: The maximum pressure which may safely be applied to the product for it to remain in specification once pressure is returned to the operating pressure range. Exposure to higher pressures may cause permanent damage to the product.

Unless otherwise specified this applies to all available pressure ports at any temperature with the operating temperature range. The customer's pressure connection system (tubing or O-rings) must be specified to be equal to, or greater than, the rated overpressure limit. Due to the possibility of light sensitivity, opaque tubing is recommended.

² **Burst Pressure:** The maximum pressure that may be applied to any port of the product without causing escape of pressure media. Product should not be expected to function after exposure to any pressure beyond the burst pressure.

³ **Total Error Band after Customer Auto-Zero:** The maximum deviation from the ideal transfer function over the entire compensated pressure range for a minimum of 24 hours after an auto-zero operation. Includes all errors due to full scale span, pressure non-linearity, pressure hysteresis, and thermal effect on span. Low pressure MPR sensors may exhibit offset shifts after reflow solder. See Technical Note "Auto-Zero Calibration Technique for Pressure Sensors" (008326-1-EN) if this shift is significant in a particular application.

TABLE 9. PRESSURE RANGE SPECIFICATIONS FOR 6 KPA TO 250 KPA										
PRESSURE RANGE (SEE FIGURE 4.)	PRESSUR	P _{MAX} .	UNIT	OVER PRESSURE ¹	BURST PRESSURE ²	TOTAL ERROR BAND AFTER CUSTOMER AUTO-ZERO ³	TOTAL ERROR BAND, TYPICAL	TRANSFER FUNCTION		
				Absolut		(%FSS)	(%FSS)			
01001/4	0	100	L.D.		-		.1 [٨		
0100KA	0	100	kPa	400	800	_	±1.5	А		
0160KA	0	160	kPa	400	800	_	±1.5	А		
0250KA	0	250	kPa	400	800	_	±1.5	А		
				Gage						
0006KG	0	6	kPa	35	70	±1.25	±2.5	С		
0010KG	0	10	kPa	35	70	±1.25	±2.5	А		
0016KG	0	16	kPa	35	70	±1.25	±2.5	А		
0025KG	0	25	kPa	35	70	±1.25	±2.5	А		
0040KG	0	40	kPa	400	800	±2.0	±2.5	В		
0060KG	0	60	kPa	400	800	±2.0	±2.5	А		
0100KG	0	100	kPa	400	800	±1.5	±2.5	А		
0160KG	0	160	kPa	400	800	±1.5	±2.5	А		
0250KG	0	250	kPa	400	800	±1.5	±2.5	А		

¹ Overpressure: The maximum pressure which may safely be applied to the product for it to remain in specification once pressure is returned to the operating pressure range. Exposure to higher pressures may cause permanent damage to the product. Unless otherwise specified this applies to all available pressure ports at any temperature with the operating temperature range. The customer's pressure connection system (tubing or O-rings) must be specified to be equal to, or greater than, the rated overpressure limit. Due to the possibility of light sensitivity, opaque tubing is recommended.

² Burst Pressure: The maximum pressure that may be applied to any port of the product without causing escape of pressure media. Product should not be expected to function after exposure to any pressure beyond the burst pressure.

³ Total Error Band after Customer Auto-Zero: The maximum deviation from the ideal transfer function over the entire compensated pressure range for a minimum of 24 hours after an auto-zero operation. Includes all errors due to full scale span, pressure non-linearity, pressure hysteresis, and thermal effect on span. Low pressure MPR sensors may exhibit offset shifts after reflow solder. See Technical Note "Auto-Zero Calibration Technique for Pressure Sensors" (008326-1-EN) if this shift is significant in a particular application.

TABLE 10. PRESSURE RANGE SPECIFICATIONS FOR 1 PSI TO 30 PSI										
PRESSURE RANGE (SEE		RE RANGE	UNIT	OVER PRESSURE ¹	BURST PRESSURE ²	TOTAL ERROR BAND AFTER CUSTOMER	TOTAL ERROR BAND,	TRANSFER FUNCTION		
FIGURE 4.)	P _{MIN} .	P _{MAX.}				AUTO-ZERO ³ (%FSS)	TYPICAL (%FSS)			
Absolute										
0015PA	0	15	psi	60	120	_	±1.5	А		
0025PA	0	25	psi	60	120	_	±1.5	А		
0030PA	0	30	psi	60	120	_	±1.5	А		
				Gage						
0001PG	0	1	psi	5	10	±1.25	±2.5	С		
0005PG	0	5	psi	60	120	±2.0	2.5	В		
0015PG	0	15	psi	60	120	±1.5	±2.5	А		
0030PG	0	30	psi	60	120	±1.5	±2.5	А		

 $^{^1}$ **Overpressure:** The maximum pressure which may safely be applied to the product for it to remain in specification once pressure is returned to the operating pressure range. Exposure to higher pressures may cause permanent damage to the product. Unless otherwise specified this applies to all available pressure ports at any temperature with the operating temperature range. The customer's pressure connection system (tubing or O-rings) must be specified to be equal to, or greater than, the rated overpressure limit. Due to the possibility of light sensitivity, opaque tubing is recommended.

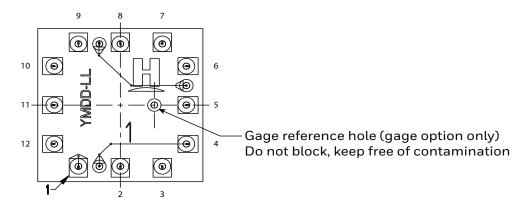
³Total Error Band after Customer Auto-Zero: The maximum deviation from the ideal transfer function over the entire compensated pressure range for a minimum of 24 hours after an auto-zero operation. Includes all errors due to full scale span, pressure non-linearity, pressure hysteresis, and thermal effect on span. Low pressure MPR sensors may exhibit offset shifts after reflow solder. See Technical Note "Auto-Zero Calibration Technique for Pressure Sensors" (008326-1-EN) if this shift is significant in a particular application.

TABLE 11. PRESSURE RANGE SPECIFICATIONS FOR 0 MMHG TO 300 MMHG								
PRESSURE RANGE (SEE FIGURE 3.)	PRESSUR P _{MIN.}	P _{MAX} .	UNIT	OVER PRESSURE ¹	BURST PRESSURE ²	TOTAL ERROR BAND AFTER CUSTOMER AUTO-ZERO ³ (%FSS)	TRANSFER FUNCTION	
Gage								
0300YG	0	300	mmHg	3100	6200	±2.0	В	

 $^{^1}$ **Overpressure:** The maximum pressure which may safely be applied to the product for it to remain in specification once pressure is returned to the operating pressure range. Exposure to higher pressures may cause permanent damage to the product. Unless otherwise specified this applies to all available pressure ports at any temperature with the operating temperature range. The customer's pressure connection system (tubing or O-rings) must be specified to be equal to, or greater than, the rated overpressure limit. Due to the possibility of light sensitivity, opaque tubing is recommended.

² Burst Pressure: The maximum pressure that may be applied to any port of the product without causing escape of pressure media. Product should not be expected to function after exposure to any pressure beyond the burst pressure.

² Burst Pressure: The maximum pressure that may be applied to any port of the product without causing escape of pressure media. Product should not be expected to function after exposure to any pressure beyond the burst pressure.


³Total Error Band after Customer Auto-Zero: The maximum deviation from the ideal transfer function over the entire compensated pressure range for a minimum of 24 hours after an auto-zero operation. Includes all errors due to full scale span, $pressure\ non-linearity,\ pressure\ hysteres is,\ and\ thermal\ effect\ on\ span.\ Low\ pressure\ MPR\ sensors\ may\ exhibit\ offset\ shifts\ after$ reflow solder. See Technical Note "Auto-Zero Calibration Technique for Pressure Sensors" (008326-1-EN) if this shift is significant in a particular application.

1.0 **General Information**

Please see pages 18-21 for product dimensions, pinouts, tape and reel dimensions, Recommended Pick and Place Geometry, and recommended tubing.

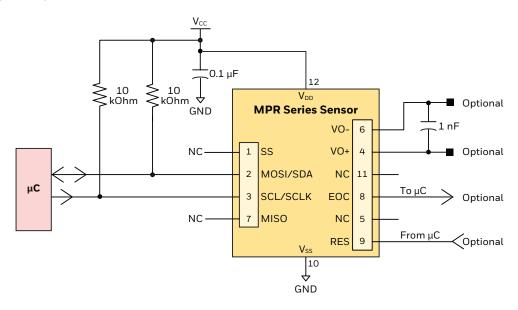
2.0 Pinout and Functionality (See Table 12.)

TABLE 12. PINOUT AND FUNCTIONALITY

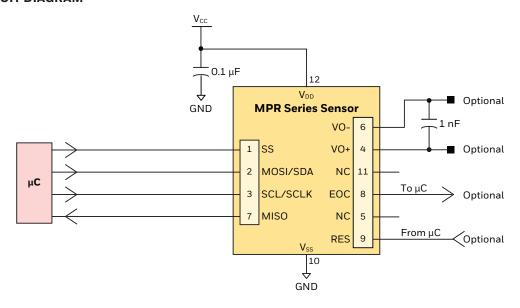
PAD NUMBER	NAME	DESCRIPTION
1	SS	Slave Select: Chip select for SPI sensor
2	MOSI/SDA	Master Out Slave In: Data in for SPI sensor; data in/out for I ² C sensor
3	SCLK/SCL	Clock input for SPI and I ² C sensor
4	VO+	$V_{\text{OUT+}} \text{pin in piezoresistive Wheatstone Bridge: Anti-aliasing filter can be connected between VO+ and } \text{VO-} $
5	NC	No connection
6	VO-	$V_{\text{OUT-}} \text{pin in piezoresistive Wheatstone Bridge: Anti-aliasing filter can be connected between VO- and VO+} $
7	MISO	Master In Slave Out: Data output for SPI sensor
8	EOC	End-of-conversion indicator: This pin is set high when a measurement and calculation have been completed and the data is ready to be clocked out
9	RES	Reset: This pin can be connected and used to control safe resetting of the sensor. RES is active-low; a V_{DD} - V_{SS} - V_{DD} transition at the RES pin leads to a complete sensor reset
10	V_{SS}	Ground reference voltage signal
11	NC	No connection
12	V_{DD}	Positive supply voltage

3.0 **Start-Up Timing**

On power-up, the MPR Series sensor is able to receive the first command after 1 ms from when the V_{DD} supply is within operating specifications. The MPR Series sensor can begin the first measurement after 2.5 ms from when the V_{DD} supply is operational. Alternatively, instead of a power-on reset, a reset and new power-up sequence can be triggered by an IC-reset signal (high low) at the RES pin.


4.0 **Power Supply Requirement**

Verify that system power to the sensor meets the V_{DD} rising slope requirement (minimum V_{DD} rising slope is at least 10 V/ms). If not, use the RES pin to bring the sensor out of reset once the system power has stabilized.


5.0 **Reference Circuit Design**

5.1 I²C and SPI Circuit Diagrams (See Figures 5 and 6.)

FIGURE 5. I²C CIRCUIT DIAGRAM

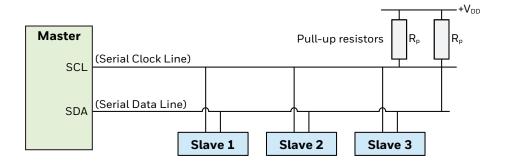
FIGURE 6. SPI CIRCUIT DIAGRAM

5.2 **Bypass Capacitor Use**

NOTICE

Ensure bypass capacitors are integrated into the end user design to ensure output noise supression.

6.0 I²C Communications


6.1 I²C Bus Configuration (See Figure 7.)

The I^2C bus is a simple, serial 8-bit oriented computer bus for efficient I^2C (Inter-IC) control. It provides good support for communication between different ICs across short circuit-board distances, such as interfacing microcontrollers with various low speed peripheral devices. For detailed specifications of the I^2C protocol, see Version 2.1 (January 2000) of the I^2C Bus Specification (source: NXP Semiconductor at https://www.nxp.com/docs/en/user-quide/UM10204.pdf).

Each device connected to the bus is software addressable by a unique address and a simple Master/Slave relationship that exists at all times. The output stages of devices connected to the bus are designed around an open collector architecture. Because of this, pull-up resistors to $+V_{DD}$ must be provided on the bus. Both SDA and SCL are bidirectional lines, and it is important to system performance to match the capacitive loads on both lines. In addition, in accordance with the I2C specification, the maximum allowable capacitance on either line is 400 pF to ensure reliable edge transitions at 400 kHz clock speeds.

When the bus is free, both lines are pulled up to +VDD. Data on the I2C bus can be transferred at a rate up to 100 kbit/s in the standard-mode, or up to 400 kbit/s in the fast-mode.

FIGURE 7. I²C BUS CONFIGURATION

6.2 I²C Data Transfer

The MPR Series I²C sensors are designed to work as Slaves and will therefore only respond to requests from a Master device. Following the address and read bit from the Master, the MPR Series sensors are designed to output up to 4 bytes of data. The first data byte is the Status Byte (8-bit) and the second to fourth bytes are the compensated pressure output (24-bit).

I²C Sensor Address 6.3

Each MPR Series I²C sensor is referenced on the bus by a 7-bit slave address. The default address for the MPR Series is 24 (0x18). Other available standard addresses are: 08 (0x08), 40 (0x28), 56 (0x38), 72 (0x48), 88 (0x58), 104 (0x68), 120 (0x78). (Other custom values are available. Please contact Honeywell Customer Service with questions regarding custom Slave addresses.)

6.4 I²C Pressure Reading

To read out a compensated pressure reading, the Master generates a START condition and sends the sensor Slave address followed by a read bit (1). After the sensor generates an acknowledge, it will transmit up to 4 bytes of data. The first data byte is the Status Byte (8-bit) and the second to fourth bytes are the compensated pressure output (24-bit). The Master must acknowledge the receipt of each byte, and can terminate the communication by sending a Not Acknowledge (NACK) bit followed by a Stop bit after receiving the required bytes of data.

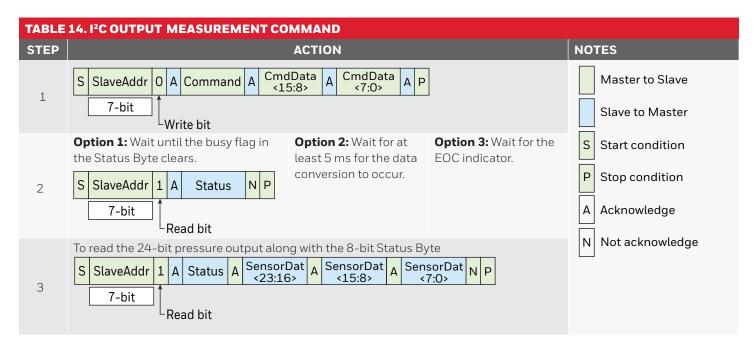
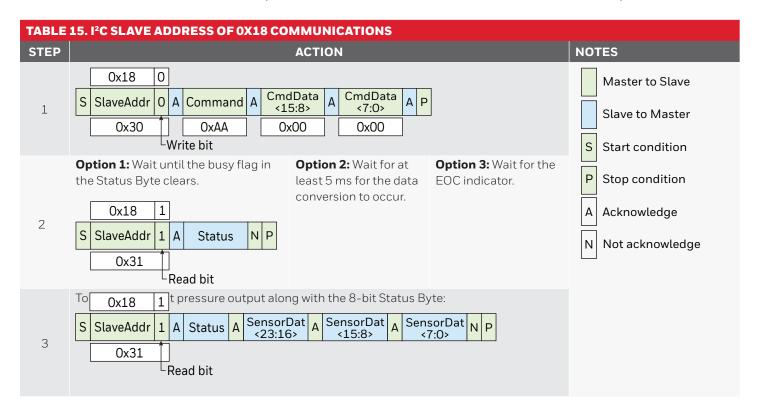

6.5 I²C Status Byte (See Table 13.)

TABLE 13. I ² C STATUS BYTE EXPLANATION						
BIT (MEANING)	STATUS	COMMENT				
7	always 0	_				
6 (Power indication)	1 = device is powered 0 = device is not powered	Needed for the SPI Mode where the Master reads all zeroes if the device is not powered or in power-on reset (POR).				
5 (Busy flag)	1 = device is busy	Indicates that the data for the last command is not yet available. No new commands are processed if the device is busy.				
4	always 0	_				
3	always 0	-				
2 (Memory integrity/error flag)	0 = integrity test passed 1 = integrity test failed	Indicates whether the checksum-based integrity check passed or failed; the memory error status bit is calculated only during the power-up sequence.				
1	always 0	-				
0 (Math saturation)	1 = internal math saturation has occurred	_				

6.6 I²C Communications


6.6.1 I²C Output Measurement Command

To communicate with the MPR Series I^2C output sensor using an Output Measurement Command of "0xAA", followed by "0x00" "0x00", follow the steps shown in Table 14. This command will cause the device to exit Standby Mode and enter Operating Mode. At the conclusion of the measurement cycle, the device will automatically re-enter Standby Mode.

6.6.2 I²C Slave Address of 0x18

To communicate with the MPR Series I²C output sensor with an I²C Slave Address of 0x18 (hex), follow the steps shown in Table 15.

6.7 I²C Timing and Level Parameters (See Table 16.)

t_{HDSTA}→ :←

TABLE 16. I²C BUS TIMING DIAGRAM AND PARAMETERS **SDA** → t_{LOW} ← -t_{HDSTA} ;←t_{BUS} ↓ t SUDAT SCL

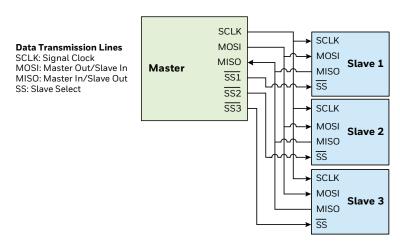
'←t_{HIGH}

CHARACTERISTIC	ABBREVIATION	MIN.	TYP.	MAX.	UNIT
SCLK clock frequency	f _{SCL}	100	_	400	kHz
Start condition hold time relative to SCL edge	t _{HDSTA}	0.1	_	_	μs
Minimum SCLK clock low width ¹	t _{LOW}	0.6	_	_	μs
Minimum SCLK clock high width ¹	t _{HIGH}	0.6	_	_	μs
Start condition setup time relative to SCL edge	t _{susta}	0.1	_	_	μs
Data hold time on SDA relative to SCL edge	t _{HDDAT}	0	_	_	μs
Data setup time on SDA relative to SCL edge	t _{sudat}	0.1	_	_	μs
Stop condition setup time on SCL	t _{susto}	0.1	_	_	μs
Bus free time between stop condition and start condition	t _{BUS}	2	_	_	μs
Output level low	Out _{low}	_	0	0.2	V_{DD}
Output level high	Out _{high}	0.8	1	_	V_{DD}
Pull-up resistance on SDA and SCL	R_p	1	_	50	kOhm

¦←t_{susta}

t_{HDDAT}→¦

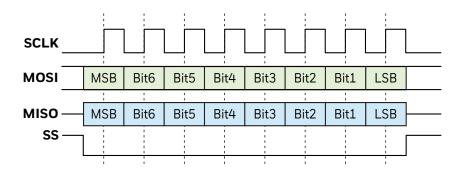
'←t_{susto}


¹Combined low and high widths must equal or exceed minimum SCLK period.

7.0 SPI Communications

7.1 SPI Definition

The Serial Peripheral Interface (SPI) is a simple bus system for synchronous serial communication between one Master and one or more Slaves. It operates either in full-duplex or half-duplex mode, allowing communication to occur in either both directions simultaneously, or in one direction only. The Master device initiates an information transfer on the bus and generates clock and control signals. Slave devices are controlled by the Master through individual Slave Select (SS) lines and are active only when selected. The MPR Series SPI sensors operate in full-duplex mode only, with data transfer from the Slave to the Master. This data transmission uses four, unidirectional bus lines. The Master controls SCLK, MOSI and SS; the Slave controls MISO. (See Figure 8.)


FIGURE 8. SPI BUS CONFIGURATION

7.2 SPI Data Transfer

Starting communication with the MPR Series SPI sensors begins by de-asserting the Slave Select (SS) line. At this point, the sensor is no longer idle, and will begin sending data once a clock is received. MPR Series SPI sensors are configured for SPI operation in mode 0 (clock polarity is 0 and clock phase is 0). (See Figure 9.)

FIGURE 9. EXAMPLE OF 1 BYTE SPI DATA TRANSFER

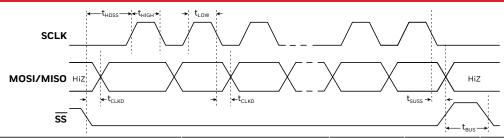
Once the clocking begins, the MPR Series SPI sensor is designed to output up to 4 bytes of data. The first data byte is the Status Byte (8-bit) and the second to fourth bytes are the compensated pressure output (24-bit).

7.3 SPI Pressure Reading

To read out a compensated pressure reading, the Master generates the necessary clock signal after activating the sensor with the Slave Select (SS) line. The sensor will transmit up to 4 bytes of data. The first data byte is the Status Byte (8-bit) and the second to fourth bytes are the compensated pressure output (24-bit). The Master can terminate the communication by stopping the clock and deactivating the SS line.

7.4 **SPI Status Byte**

The SPI status byte contains the bits shown in Table 16.


SPI Communication

To communicate with the MPR Series SPI output sensor using an Output Measurement Command of "0xAA", followed by "0x00" "0x00", follow the steps shown in Table 17. This command will cause the device to exit Standby Mode and enter Operating Mode. At the conclusion of the measurement cycle, the device will automatically re-enter Standby Mode.

TABLE	17. SPI (OUTPUT N	MEASUREI	MENT CO	MMAND				
STEP	ACTION						NOTES		
	The data on MISO depend on the preceding command. Discard the data on the MISO line.					Mantauta Claus			
		OxAA	0x00	0x00			Master to Slave		
1	MOSI	Command other than NOP	CmdData <15:8>	CmdData <7:0>					
	MISO	Status	Data	Data					
	Option	1: Wait unt	il the	Option 2	2: Wait for at least 5	Option 3: Wait for the EOC	• NOP Command is		
	_	g in the Sta	atus Byte	ms for th	ne data conversion	indicator.	"OxFO".		
	clears.	0xF0		to occur.					
2	MOSI	Command = NOP							
	MISO	Status							
	To read	the 24-bit	pressure o	utput along	g with the 8-bit Status I	Byte:			
		0xF0	0x00	0x00	0x00				
3	MOSI	Command = NOP	00 _{Hex}	00 _{Hex}	ООнех				
	MISO	Status	SensorDat <24:16>	SensorDat <15:8>	SensorDat <7:0>				

7.6 SPI Timing and Level Parameters (See Table 18.)

TABLE 18. SPI BUS TIMING DIAGRAM AND PARAMETERS

CHARACTERISTIC	ABBREVIATION	MIN.	TYP.	MAX.	UNIT
SCLK clock frequency	f _{SCL}	50	_	800	kHz
SS drop to first clock edge	t _{HDSS}	2.5	_	_	μs
Minimum SCLK clock low width ¹	t _{LOW}	0.6	_	_	μs
Minimum SCLK clock high width ¹	t _{HIGH}	0.6	_	_	μs
Clock edge to data transition	t _{CLKD}	0	_	_	μs
Rise of SS relative to last clock edge	t _{suss}	0.1	_	_	μs
Bus free time between rise and fall of SS	t _{BUS}	2	_	_	μs
Output level low	Out _{low}	_	0	0.2	V_{DD}
Output level high	Out _{high}	0.8	1	_	V_{DD}

 $^{^{1}}$ Combined low and high widths must equal or exceed minimum SCLK period.

8.0 **MPR Series Sensor Output Pressure Calculation**

The MPR Series sensor output can be expressed by the transfer function of the device as shown in Equation 1:

Equation 1: Pressure Sensor Transfer Function

Output =
$$\frac{\text{Output}_{\text{max.}} - \text{Output}_{\text{min.}}}{P_{\text{max.}} - P_{\text{min.}}} * (Pressure - P_{\text{min.}}) + \text{Output}_{\text{min.}}$$

Rearranging this equation to solve for Pressure, we get Equation 2:

Equation 2: Pressure Output Function

Pressure =
$$\frac{(Output - Output_{min.}) * (P_{max.} - P_{min.})}{Output_{max.} - Output_{min.}} + P_{min.}$$

Where:

 $Output_{max.}$ = output at maximum pressure [counts]

Output_{min.} = output at minimum pressure [counts]

P_{max.} = maximum value of pressure range [bar, psi, kPa, etc.]

P_{min.} = minimum value of pressure range [bar, psi, kPa, etc.]

Pressure = pressure reading [bar, psi, kPa, etc.]

Output = digital pressure reading [counts]

Example: Calculate the pressure for a -1 psi to 1 psi gage sensor with a 10% to 90% calibration, and a pressure output of 14260634 (decimal) counts:

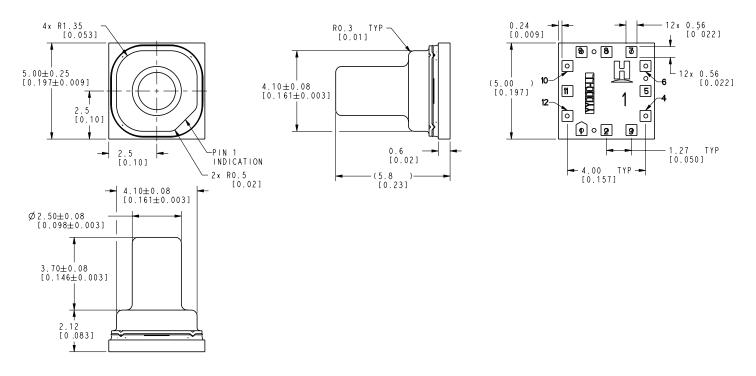
Output_{max} = 15099494 counts (90% of 2^{24} counts or 0xE66666)

Output_{min.} = 1677722 counts (10% of 2^{24} counts or 0x19999A)

 $P_{max.} = 1 psi$

 $P_{min.} = -1 psi$

Pressure = pressure in psi


Output = 14260634 counts

Pressure =
$$\frac{(14260634-1677722)*(1-(-1))}{15099494-1677722} + (-1)$$

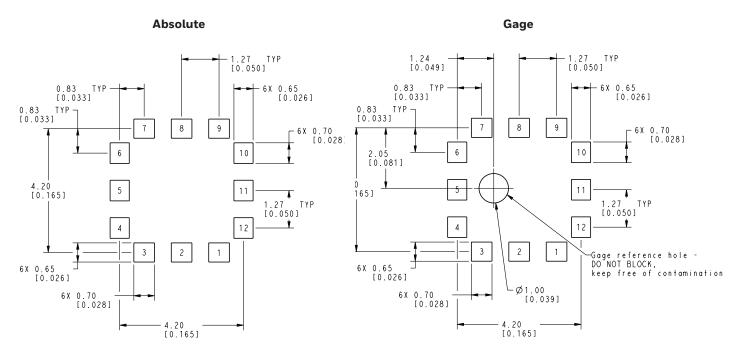
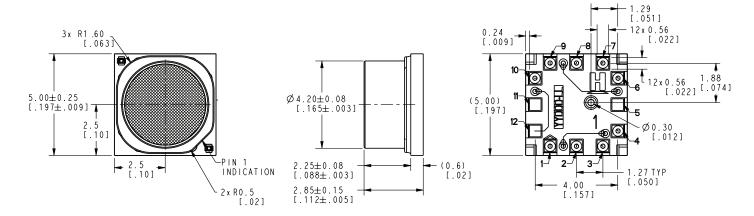

$$Pressure = \frac{25165824}{13421772} + (-1)$$

FIGURE 10. LONG PORT SENSOR AND RECOMMENDED PCB PAD LAYOUT DIMENSIONS (FOR REFERENCE ONLY: MM [IN].)

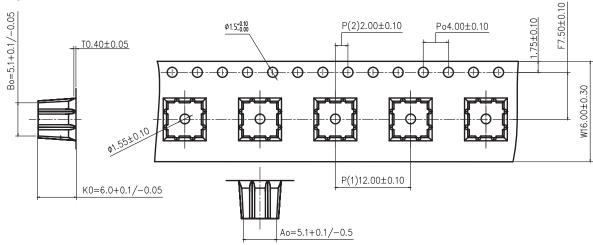
Sensor



Recommended PCB Pad Layout

FIGURE 11. SHORT PORT SENSOR AND RECOMMENDED PCB PAD LAYOUT DIMENSIONS (FOR REFERENCE ONLY: MM [IN].)

Sensor



Recommended PCB Pad Layout

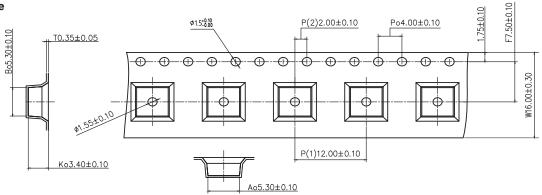


FIGURE 12. TAPE AND REEL DIMENSIONS (FOR REFERENCE ONLY: MM.)

Long Port Tape

Short Port Tape

Reel

REFLOWABLE PROTECTIVE SILICONE CAP

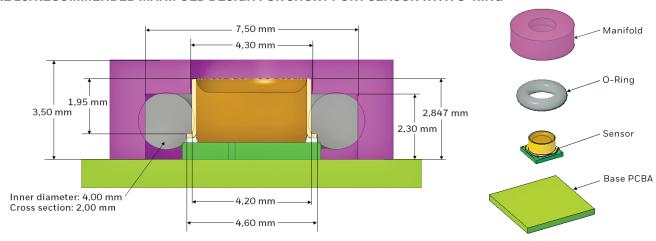
Every short port MPR Series sensor is shipped with a reflowable protective silicone cap intended to protect the sensor's protective gel throughout the assembly process. This cap can withstand lead-free, reflow temperatures and is intended to be removed after the end-user has completed assembly of the MPR sensor to the mating assembly.

PROTECTIVE SILICONE CAP REMOVAL

Removal of the cap may easily be done manually using ESD-safe tweezers; however, if possible, and to eliminate possible sensor protective gel damage, the cap removal process should be done in a semi-automated or automated manner. If the cap must be removed manually, follow this removal process:

- Using ESD-safe tweezers, grasp the silicone cap midway up the straight port and lift the cap up vertically until it is no longer supported by the sensor housing.
- At this point, stop the vertical movement and relieve the grasp of the tweezers.
- Regrasp the cap in the unsupported area and continue the vertical movement until the cap is free and clear of the sensor's protective gel.
- Ensure that the sensor's protective gel is not damaged during the cap removal process.

RECOMMENDED TUBING


See Table 19 for recommended tubing information.

RECOMMENDED O-RINGS

See Figure 13 and Table 20 for O-Ring location, size and recommended part numbers.

TABLE 19. RECOMMENDED TUBING								
MANUFACTURER	ТҮРЕ	PART NUMBER	ID (IN)	OD (IN)	PRESSURE AT 25°C (PSI)			
Frelin-Wade	Fre-Thane® (polyurethane)	1A-156-11	0.093	0.156	210			
Frelin-Wade	nylon	1A-200-01	0.093	0.125	270			
NewAge Industries	PVC	1100225	0.094	0.156	42			
NewAge Industries	silicone	2800315	0.094	0.156	20			

FIGURE 13. RECOMMENDED MANIFOLD DESIGN FOR SHORT PORT SENSOR WITH O-RING

TABLE 20. RECOMMENDED O-RINGS								
ID (MM)	CROSS SECTION (WIDTH) (MM)	SUPPLIER	PART NUMBER	MATERIAL	HARDNESS			
4.00	2.00	McMaster	9262K163	Buna-N	Durometer 70A			
4.00	2.00	McMaster	1174N421	Buna-N	Durometer 50A			
4.00	2.00	McMaster	1185N82	Viton® Fluoroelastomer	Durometer 75A			
4.00	2.00	McMaster	9263K163	Viton® Fluoroelastomer	Durometer 75A			
4.00	2.00	McMaster	5233T47	Silicone	Durometer 70A			
4.00	2.00	McMaster	1295N222	Viton® Fluoroelastomer	Durometer 75A			
4.00	2.00	McMaster	1278N15	Kalrez 4079	Durometer 75A			

ADDITIONAL MATERIALS

The following associated literature is available at sensing.honeywell.com:

- · Product line guide
- · Product range guide
- Application information
- CAD models
- Product images

WARRANTY/REMEDY

Honeywell warrants goods of its manufacture as being free of defective materials and faulty workmanship during the applicable warranty period. Honeywell's standard product warranty applies unless agreed to otherwise by Honeywell in writing; please refer to your order acknowledgment or consult your local sales office for specific warranty details. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace, at its option, without charge those items that Honeywell, in its sole discretion, finds defective. The foregoing is buyer's sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particular purpose. In no event shall Honeywell be liable for consequential, special, or indirect damages.

While Honeywell may provide application assistance personally, through our literature and the Honeywell web site, it is buyer's sole responsibility to determine the suitability of the product in the application.

Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this writing. However, Honeywell assumes no responsibility for its use.

△ WARNINGPERSONAL INJURY

DO NOT USE these products as safety or emergency stop devices or in any other application where failure of the product could result in personal injury.

Failure to comply with these instructions could result in death or serious injury.

⚠ WARNINGMISUSE OF DOCUMENTATION

- The information presented in this product sheet is for reference only.
 Do not use this document as a product installation guide.
- Complete installation, operation, and maintenance information is provided in the instructions supplied with each product.

Failure to comply with these instructions could result in death or serious injury.

FOR MORE INFORMATION

Honeywell Sensing and Internet of Things services its customers through a worldwide network of sales offices and distributors. For application assistance, current specifications, pricing or the nearest Authorized Distributor, visit sensing.honeywell.com or call:

Asia Pacific +65 6355-2828 Europe +44 1698 481481 USA/Canada +1-800-537-6945

Fre-Thane* is a registered trademark of Freelin-Wade Co. Viton* is a registered trademark The Chemours Company.

Honeywell Sensing and Internet of Things

9680 Old Bailes Road Fort Mill, SC 29707 honeywell.com

