MOSFET - Power, Single, N-Channel, SOT-23 30 V, 2.5 A

Features

- Leading Planar Technology for Low Gate Charge / Fast Switching
- 4.5 V Rated for Low Voltage Gate Drive
- SOT-23 Surface Mount for Small Footprint (3 x 3 mm)
- NV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

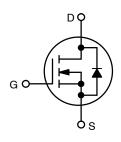
Applications

- DC-DC Conversion
- Load/Power Switch for Portables
- Load/Power Switch for Computing

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

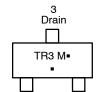
Parame	Symbol	Value	Unit		
Drain-to-Source Voltage			V_{DSS}	30	V
Gate-to-Source Voltage			V_{GS}	±20	V
Continuous Drain	Steady	T _A = 25°C	I _D	2.0	Α
Current (Note 1)	State	T _A = 85°C		1.5	
	t ≤ 10 s	T _A = 25°C		2.5	
Power Dissipation (Note 1)	Steady State T _A = 25°C		P _D	0.73	W
Continuous Drain	Steady	T _A = 25°C	I _D	1.5	Α
Current (Note 2)	State	T _A = 85°C		1.1	
Power Dissipation (Note 2)	T _A = 25°C		P _D	0.42	W
Pulsed Drain Current	t _p =	: 10 μs	I _{DM}	10	Α
Operating Junction and S	T _J , T _{stg}	–55 to 150	°C		
Source Current (Body Dio	I _S	2.0	Α		
$ \begin{array}{c} \text{Peak Source Current} \\ \text{(Diode Forward)} \end{array} \hspace{0.5cm} t_p = 10 \; \mu \text{s} $			I _{SM}	4.0	Α
Lead Temperature for Sol (1/8" from case for 10 s)	dering Pur	poses	TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.



ON Semiconductor®

www.onsemi.com


V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX	
30 V	85 mΩ @ 10 V	2.5 A	
	105 mΩ @ 4.5 V	,	

N-Channel

SOT-23 **CASE 318** STYLE 21

Source

MARKING DIAGRAM/ PIN ASSIGNMENT

TR3 = Specific Device Code

1 Gate

= Date Code = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NTR4503NT1G	SOT-23 (Pb-Free)	3000 / Tape & Reel
NVTR4503NT1G	SOT-23 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	170	°C/W
Junction-to-Ambient - t < 10 s (Note 1)	$R_{\theta JA}$	100	
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	300	

Surface-mounted on FR4 board using 1 in sq pad size.
 Surface-mounted on FR4 board using the minimum recommended pad size.

ELECTRICAL CHARACTERISTICS ($T_J = 25$ °C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
OFF CHARACTERISTICS			1			
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	30	36		V
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 24 V			1.0	μΑ
		V _{GS} = 0 V, V _{DS} = 24 V, T _J = 125°C			10	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			± 100	nA
ON CHARACTERISTICS (Note 3)	•		•		•	
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 250 \mu A$	1.0	1.75	3.0	V
Drain-to-Source On-Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 2.5 A		85	110	mΩ
		V _{GS} = 4.5 V, I _D = 2.0 A		105	140	
Forward Transconductance	9FS	V _{DS} = 4.5 V, I _D = 2.5 A		5.3		S
CHARGES AND CAPACITANCES						
Input Capacitance	C _{iss}			135		pF
Output Capacitance	C _{oss}	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$ $V_{DS} = 15 \text{ V}$		52		
Reverse Transfer Capacitance	C _{rss}	VDS = 13 V		15		
Input Capacitance	C _{iss}			130	250	pF
Output Capacitance	C _{oss}	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$ $V_{DS} = 24 \text{ V}$		42	75	
Reverse Transfer Capacitance	C _{rss}	VDS - 24 V		13	25	
Total Gate Charge	Q _{G(TOT)}			3.6	7.0	nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 10 V, V _{DS} = 15 V,		0.3		
Gate-to-Source Charge	Q _{GS}	I _D = 2.5 A		0.6		
Gate-to-Drain Charge	Q_{GD}			0.7		
Total Gate Charge	Q _{G(TOT)}			1.9		nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 4.5 V, V _{DS} = 24 V,		0.3		
Gate-to-Source Charge	Q_{GS}	I _D = 2.5 A		0.6]
Gate-to-Drain Charge	Q_{GD}			0.9]
SWITCHING CHARACTERISTICS (No	ote 4)					
Turn-On Delay Time	t _{d(on)}			5.8	12	ns
Rise Time	t _r	V _{GS} = 10 V, V _{DD} = 15 V,		5.8	10	
Turn-Off Delay Time	t _{d(off)}	$I_D = 1 \text{ A}, R_G = 6 \Omega$		14	25]
Fall Time	t _f			1.6	5.0]
Turn-On Delay Time	t _{d(on)}			4.8		ns
Rise Time	t _r	V _{GS} = 10 V, V _{DD} = 24 V,		6.7		
Turn-Off Delay Time	t _{d(off)}	$I_D = 2.5 \text{ A}, R_G = 2.5 \Omega$		13.6		
Fall Time	t _f			1.8		
DRAIN-SOURCE DIODE CHARACTE	RISTICS					
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 2.0 A		0.85	1.2	V
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, I _S = 2.0 A,		9.2		ns
Reverse Recovery Charge	Q _{RR}	dl _S /dt = 100 A/μs		4.0		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.

4. Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES

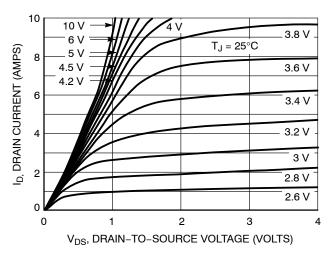


Figure 1. On-Region Characteristics

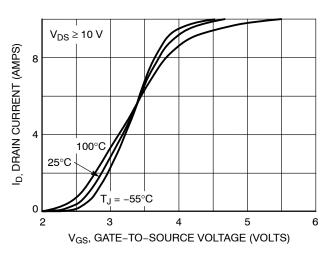


Figure 2. Transfer Characteristics

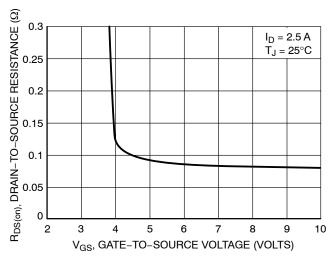


Figure 3. On-Resistance vs. Gate-to-Source Voltage

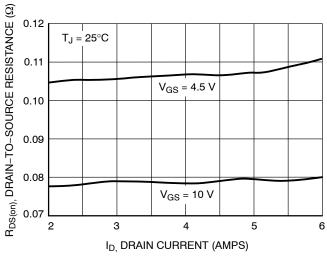


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

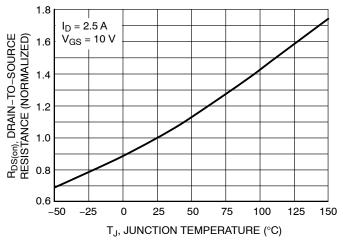


Figure 5. On–Resistance Variation with Temperature

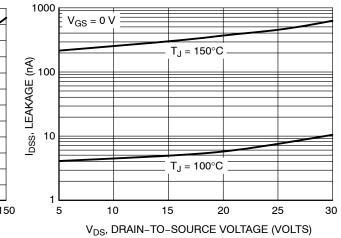
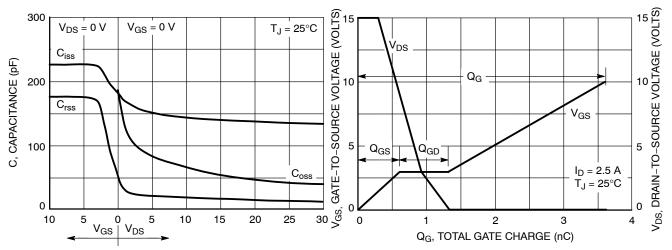



Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL PERFORMANCE CURVES

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

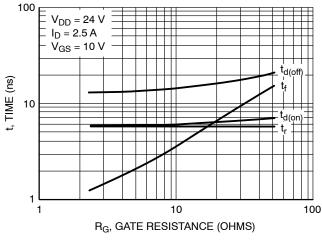


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

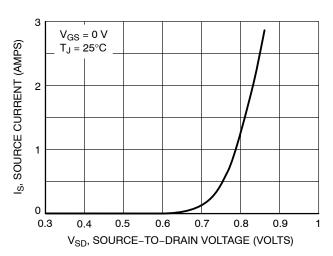
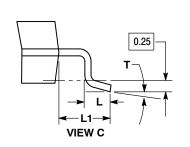
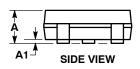
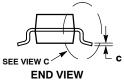


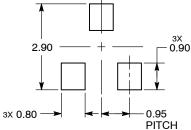
Figure 10. Diode Forward Voltage vs. Current




SOT-23 (TO-236) CASE 318-08 **ISSUE AS**

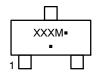

DATE 30 JAN 2018

SCALE 4:1 D - 3X b


TOP VIEW

RECOMMENDED SOLDERING FOOTPRINT

DIMENSIONS: MILLIMETERS


NOTES:

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH.
 MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH,

PROT	RUSIONS, OR GATE BURRS.	
		T

	M	MILLIMETERS			INCHES	
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
С	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
е	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
HE	2.10	2.40	2.64	0.083	0.094	0.104
T	0°		10°	0°		10°

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

= Date Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

STYLE 1 THRU 5: CANCELLED	STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 7: PIN 1. EMITTER 2. BASE 3. COLLECTOR	STYLE 8: PIN 1. ANODE 2. NO CONNECTION 3. CATHODE
OT (1 F O			

SOT-23 (TO-236)

STYLE 9:	STYLE 10:	STYLE 11:	STYLE 12:	STYLE 13:	STYLE 14:
PIN 1. ANODE	PIN 1. DRAIN	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. SOURCE	PIN 1. CATHODE
ANODE	SOURCE	CATHODE	CATHODE	2. DRAIN	2. GATE
CATHODE	3. GATE	CATHODE-ANODE	ANODE	3. GATE	ANODE

STYLE 15:	STYLE 16:	STYLE 17:	STYLE 18:	STYLE 19:	STYLE 20:
PIN 1. GATE	PIN 1. ANODE	PIN 1. NO CONNECTION	PIN 1. NO CONNECTION	PIN 1. CATHODE	PIN 1. CATHODE
CATHODE	CATHODE	ANODE	CATHODE	ANODE	ANODE
ANODE	CATHODE	CATHODE	ANODE	CATHODE-ANOD	E 3. GATE

STYLE 21:	STYLE 22:	STYLE 23:	STYLE 24:	STYLE 25:	STYLE 26:
PIN 1. GATE	PIN 1. RETURN	PIN 1. ANODE	PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE
SOURCE	OUTPUT	2. ANODE	2. DRAIN	2. CATHODE	2. ANODE
3 DRAIN	3 INPLIT	3 CATHODE	3. SOURCE	3. GATE	NO CONNECTION

STYLE 27: PIN 1. CATHODE 2. CATHODE 3. CATHODE	STYLE 28: PIN 1. ANODE 2. ANODE 3. ANODE	
DOCUMENT N	UMBER: 98ASB42226B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DESCRIPTION:

PAGE 1 OF 1

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

NTR4503NT1 NTR4503NT1G NTR4503NT3 NTR4503NT3G NVTR4503NT1G